Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40380 by rahul 19 last updated on 21/Jul/18

Solve :     (dy/dx) = ((x+y)/(x−y))

$${S}\mathrm{olve}\::\:\:\:\:\:\frac{\mathrm{dy}}{\mathrm{d}{x}}\:=\:\frac{{x}+{y}}{{x}−{y}} \\ $$

Commented by rahul 19 last updated on 21/Jul/18

i′ m getting   tan^(−1) (y/x) = lnx + (1/2)ln(1+(y^2 /x^2 ))+lnc  Someone verify , is it correct?

$$\mathrm{i}'\:\mathrm{m}\:\mathrm{getting}\: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{y}}{{x}}\:=\:{lnx}\:+\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)+{lnc} \\ $$$$\mathrm{Someone}\:\mathrm{verify}\:,\:\mathrm{is}\:\mathrm{it}\:\mathrm{correct}? \\ $$

Answered by ajfour last updated on 21/Jul/18

xdy−ydy=xdx+ydx  xdy−ydx = xdx+ydy  ((xdy−ydx)/x^2 )=((d(x^2 +y^2 ))/(2x^2 ))  d((y/x))=((d(x^2 +y^2 ))/(2x^2 ))  ⇒ ((2x^2 )/(x^2 +y^2 ))d((y/x)) = ((d(x^2 +y^2 ))/(x^2 +y^2 ))  ⇒  ((2d(y/x))/(1+(y/x)^2 )) = ((d(x^2 +y^2 ))/(x^2 +y^2 ))  ⇒ 2tan^(−1) (y/x)−ln (x^2 +y^2 )=c .  same as     tan^(−1) (y/x)=ln x+(1/2)ln (1+(y^2 /x^2 ))+c .

$${xdy}−{ydy}={xdx}+{ydx} \\ $$$${xdy}−{ydx}\:=\:{xdx}+{ydy} \\ $$$$\frac{{xdy}−{ydx}}{{x}^{\mathrm{2}} }=\frac{{d}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$${d}\left(\frac{{y}}{{x}}\right)=\frac{{d}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{d}\left(\frac{{y}}{{x}}\right)\:=\:\frac{{d}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\frac{\mathrm{2}{d}\left({y}/{x}\right)}{\mathrm{1}+\left({y}/{x}\right)^{\mathrm{2}} }\:=\:\frac{{d}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{2tan}^{−\mathrm{1}} \frac{{y}}{{x}}−\mathrm{ln}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)={c}\:. \\ $$$${same}\:{as} \\ $$$$\:\:\:\mathrm{tan}^{−\mathrm{1}} \frac{{y}}{{x}}=\mathrm{ln}\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)+{c}\:. \\ $$

Commented by rahul 19 last updated on 21/Jul/18

thank you sir ��

Commented by mondodotto@gmail.com last updated on 21/Jul/18

sir which part of D.E used here?

$$\mathrm{sir}\:\mathrm{which}\:\mathrm{part}\:\mathrm{of}\:\mathrm{D}.\mathrm{E}\:\mathrm{used}\:\mathrm{here}? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jul/18

(dy/dx)=((1+(y/x))/(1−(y/x)))   let t=(y/x) so y=tx  hence(dy/dx)=t+x(dt/dx)  t+x(dt/dx)=((1+t)/(1−t))  x(dt/dx)=((1+t)/(1−t))−t  x(dt/dx)=((1+t−t+t^2 )/(1−t))  ((1−t)/(1+t^2 ))dt=(dx/x)  (dt/(1+t^2 ))−((tdt)/(1+t^2 ))=(dx/x)  ∫(dt/(1+t^2 ))−(1/2)∫((d(1+t^2 ))/(1+t^2 ))=∫(dx/x)  tan^(−1) (t)−(1/2)ln(1+t^2 )=lnx+lnc  tan^(−1) ((y/x))=ln{xc(1+(y^2 /x^2 ))^(1/2) }  e^(tan^(−1) ((y/x)) ) =xc(1+(y^2 /x^2 ))^(1/2)

$$\frac{{dy}}{{dx}}=\frac{\mathrm{1}+\frac{{y}}{{x}}}{\mathrm{1}−\frac{{y}}{{x}}}\:\:\:{let}\:{t}=\frac{{y}}{{x}}\:{so}\:{y}={tx}\:\:{hence}\frac{{dy}}{{dx}}={t}+{x}\frac{{dt}}{{dx}} \\ $$$${t}+{x}\frac{{dt}}{{dx}}=\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}} \\ $$$${x}\frac{{dt}}{{dx}}=\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}−{t} \\ $$$${x}\frac{{dt}}{{dx}}=\frac{\mathrm{1}+{t}−{t}+{t}^{\mathrm{2}} }{\mathrm{1}−{t}} \\ $$$$\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\frac{{dx}}{{x}} \\ $$$$\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }−\frac{{tdt}}{\mathrm{1}+{t}^{\mathrm{2}} }=\frac{{dx}}{{x}} \\ $$$$\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }=\int\frac{{dx}}{{x}} \\ $$$${tan}^{−\mathrm{1}} \left({t}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)={lnx}+{lnc} \\ $$$${tan}^{−\mathrm{1}} \left(\frac{{y}}{{x}}\right)={ln}\left\{{xc}\left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \right\} \\ $$$${e}^{{tan}^{−\mathrm{1}} \left(\frac{{y}}{{x}}\right)\:} ={xc}\left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$

Commented by rahul 19 last updated on 21/Jul/18

thank you sir ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com