Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 41409 by maxmathsup by imad last updated on 06/Aug/18

calculate S_p =Σ_(n=1) ^∞     (((−1)^n )/(n(n+1)(n+2)...(n+p)))  with p fromN

$${calculate}\:{S}_{{p}} =\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{p}\right)}\:\:{with}\:{p}\:{fromN} \\ $$

Answered by sma3l2996 last updated on 07/Aug/18

(1/(n(n+1)(n+2)...(n+p)))=(a_0 /n)+(a_1 /(n+1))+...+(a_p /(n+p))  with  a_i =lim_(n→−i) ((n+i)/(n(n+1)...(n+p)))  (1/(n(n+1)(n+2)...(n+p)))=Σ_(i=0) ^p (a_i /(n+i))  so   S_p =Σ_(n=1) ^∞ (((−1)^n )/(n(n+1)(n+2)...(n+p)))=Σ_(n=1) ^∞ Σ_(i=0) ^p (((−1)^n a_i )/(n+i))  =Σ_(i=0) ^p a_i Σ_(n=1) ^∞ (((−1)^n )/(n+i))  let   m=n+i  S_n =Σ_(i=0) ^p a_i Σ_(m=i+1) ^∞ (((−1)^(m−i) )/m)  =Σ_(i=0) ^∞ a_i (−1)^(−i) (Σ_(m=i+1) ^∞ (((−1)^m )/m)+Σ_(m=1) ^i (((−1)^m )/m)−Σ_(m=1) ^i (((−1)^m )/m))  =Σ_(i=0) ^p (−1)^i a_i (Σ_(m=1) ^∞ (((−1)^m )/m)−Σ_(m=1) ^i (((−1)^m )/m))  note:  Σ_(n=1) ^∞ (((−1)^n )/n)=−ln(2)  Therefore:    S_p =Σ_(i=0) ^p (−1)^i a_i (−ln(2)−Σ_(m=1) ^i (((−1)^m )/m))

$$\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{p}\right)}=\frac{{a}_{\mathrm{0}} }{{n}}+\frac{{a}_{\mathrm{1}} }{{n}+\mathrm{1}}+...+\frac{{a}_{{p}} }{{n}+{p}} \\ $$$${with}\:\:{a}_{{i}} =\underset{{n}\rightarrow−{i}} {{lim}}\frac{{n}+{i}}{{n}\left({n}+\mathrm{1}\right)...\left({n}+{p}\right)} \\ $$$$\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{p}\right)}=\underset{{i}=\mathrm{0}} {\overset{{p}} {\sum}}\frac{{a}_{{i}} }{{n}+{i}} \\ $$$${so}\:\:\:{S}_{{p}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{p}\right)}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{i}=\mathrm{0}} {\overset{{p}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {a}_{{i}} }{{n}+{i}} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{{p}} {\sum}}{a}_{{i}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+{i}} \\ $$$${let}\:\:\:{m}={n}+{i} \\ $$$${S}_{{n}} =\underset{{i}=\mathrm{0}} {\overset{{p}} {\sum}}{a}_{{i}} \underset{{m}={i}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}−{i}} }{{m}} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{i}} \left(−\mathrm{1}\right)^{−{i}} \left(\underset{{m}={i}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{{m}}+\underset{{m}=\mathrm{1}} {\overset{{i}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{{m}}−\underset{{m}=\mathrm{1}} {\overset{{i}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{{m}}\right) \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{{p}} {\sum}}\left(−\mathrm{1}\right)^{{i}} {a}_{{i}} \left(\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{{m}}−\underset{{m}=\mathrm{1}} {\overset{{i}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{{m}}\right) \\ $$$${note}:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}=−{ln}\left(\mathrm{2}\right) \\ $$$${Therefore}:\:\: \\ $$$${S}_{{p}} =\underset{{i}=\mathrm{0}} {\overset{{p}} {\sum}}\left(−\mathrm{1}\right)^{{i}} {a}_{{i}} \left(−{ln}\left(\mathrm{2}\right)−\underset{{m}=\mathrm{1}} {\overset{{i}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{{m}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com