Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41702 by abdo.msup.com last updated on 11/Aug/18

find the value of ∫_0 ^(√3)  arcsin(((2t)/(1+t^2 )))dt

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:{arcsin}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt} \\ $$

Commented by math khazana by abdo last updated on 12/Aug/18

let A = ∫_0 ^(√3)  arcsin(((2t)/(1+t^2 )))dt  changement  t =tanθ give  A = ∫_0 ^(π/3)   arcsin(sin(2θ))(1+tan^2 θ)dθ  =_(2θ=u)    ∫_0 ^((2π)/3)  arcsin(sinu)(1+tan^2 ((u/2)))du  =∫_0 ^(π/2) u(1+tan^2 ((u/2)))du + ∫_(π/2) ^((2π)/3) arcsin(sinu)(1+tan^2 ((u/2)))du  ∫_0 ^(π/2) u(1+tan^2 ((u/2)))du  =[(u^2 /2)]_0 ^(π/2)  +∫_0 ^(π/2)  tan^2 ((u/2))du  =(π^2 /8)   + ∫_0 ^(π/2) (1+tan^2 ((u/2)))du −(π/2)  = [2tan((u/2))]_0 ^(π/2)   +(π^2 /8) −(π/2) =2 +(π^2 /8) −(π/2) also  ∫_(π/2) ^((2π)/3)  arcsin(sinu)(1+tan^2 ((u/2)))du  =_(u=π−t)      −∫_(π/2) ^(π/3)   arcsin(sin(π−t))(1+tan^2 ((π/2)−(t/2)))dt  = ∫_(π/3) ^(π/2)  t{1  +(1/(tan^2 ((t/2))))}dt  (  bijection at [−(π/2),(π/2)]  = [(t^2 /2)]_(π/3) ^(π/2)    +  ∫_(π/3) ^(π/2)       (t/(tan^2 ((t/2))))dt  =( (π^2 /8) −(π^2 /(18))) + ∫_(π/3) ^(π/2)    (t/(tan^2 ((t/2))))dt  but  ∫_(π/3) ^(π/2)     (t/(tan^2 ((t/2))))dt =_((t/2)=u)  ∫_(π/6) ^(π/4)      ((2u)/(tan^2 (u))) 2du  =4 ∫_(π/6) ^(π/4)    (u/(tan^2 u)) du =_(tanu =α)    4 ∫_(1/(√3)) ^1    ((arctan(α))/α^2 ) (dα/(1+α^2 ))  =4 ∫_(1/(√3)) ^1    ((arctan(α))/(α^2 (1+α^2 ))) dα ....be continued...

$${let}\:{A}\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:{arcsin}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt}\:\:{changement} \\ $$$${t}\:={tan}\theta\:{give} \\ $$$${A}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\:{arcsin}\left({sin}\left(\mathrm{2}\theta\right)\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=_{\mathrm{2}\theta={u}} \:\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{2}\pi}{\mathrm{3}}} \:{arcsin}\left({sinu}\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{u}}{\mathrm{2}}\right)\right){du} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {u}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{u}}{\mathrm{2}}\right)\right){du}\:+\:\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{2}\pi}{\mathrm{3}}} {arcsin}\left({sinu}\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{u}}{\mathrm{2}}\right)\right){du} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {u}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{u}}{\mathrm{2}}\right)\right){du}\:\:=\left[\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{tan}^{\mathrm{2}} \left(\frac{{u}}{\mathrm{2}}\right){du} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\:\:+\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{u}}{\mathrm{2}}\right)\right){du}\:−\frac{\pi}{\mathrm{2}} \\ $$$$=\:\left[\mathrm{2}{tan}\left(\frac{{u}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:+\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:−\frac{\pi}{\mathrm{2}}\:=\mathrm{2}\:+\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:−\frac{\pi}{\mathrm{2}}\:{also} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{2}\pi}{\mathrm{3}}} \:{arcsin}\left({sinu}\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{u}}{\mathrm{2}}\right)\right){du} \\ $$$$=_{{u}=\pi−{t}} \:\:\:\:\:−\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{3}}} \:\:{arcsin}\left({sin}\left(\pi−{t}\right)\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}−\frac{{t}}{\mathrm{2}}\right)\right){dt} \\ $$$$=\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:{t}\left\{\mathrm{1}\:\:+\frac{\mathrm{1}}{{tan}^{\mathrm{2}} \left(\frac{{t}}{\mathrm{2}}\right)}\right\}{dt}\:\:\left(\:\:{bijection}\:{at}\:\left[−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right]\right. \\ $$$$=\:\left[\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right]_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:+\:\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{t}}{{tan}^{\mathrm{2}} \left(\frac{{t}}{\mathrm{2}}\right)}{dt} \\ $$$$=\left(\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{18}}\right)\:+\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{t}}{{tan}^{\mathrm{2}} \left(\frac{{t}}{\mathrm{2}}\right)}{dt}\:\:{but} \\ $$$$\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{t}}{{tan}^{\mathrm{2}} \left(\frac{{t}}{\mathrm{2}}\right)}{dt}\:=_{\frac{{t}}{\mathrm{2}}={u}} \:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{\mathrm{2}{u}}{{tan}^{\mathrm{2}} \left({u}\right)}\:\mathrm{2}{du} \\ $$$$=\mathrm{4}\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{u}}{{tan}^{\mathrm{2}} {u}}\:{du}\:=_{{tanu}\:=\alpha} \:\:\:\mathrm{4}\:\int_{\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left(\alpha\right)}{\alpha^{\mathrm{2}} }\:\frac{{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} } \\ $$$$=\mathrm{4}\:\int_{\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left(\alpha\right)}{\alpha^{\mathrm{2}} \left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}\:{d}\alpha\:....{be}\:{continued}... \\ $$

Commented by alex041103 last updated on 12/Aug/18

You are wrong. When youmake the  substitution t=tanθ, you have to multiply  the integrand by a factor of sec^2 θ,  because dt=sec^2 θdθ.

$${You}\:{are}\:{wrong}.\:{When}\:{youmake}\:{the} \\ $$$${substitution}\:{t}={tan}\theta,\:{you}\:{have}\:{to}\:{multiply} \\ $$$${the}\:{integrand}\:{by}\:{a}\:{factor}\:{of}\:{sec}^{\mathrm{2}} \theta, \\ $$$${because}\:{dt}={sec}^{\mathrm{2}} \theta{d}\theta. \\ $$

Commented by math khazana by abdo last updated on 12/Aug/18

yes yes you are right thanks...

$${yes}\:{yes}\:{you}\:{are}\:{right}\:{thanks}... \\ $$

Answered by alex041103 last updated on 11/Aug/18

let t=tan(x/2) dt=((sec^2 (x/2))/2)dx ⇒x=2arctan(t)  ((2t)/(1+t^2 ))=sin(x)⇒∫_0 ^((2π)/3) xd(tan(x/2))  IBP  ∫_0 ^((2π)/3) xd(tan(x/2))=[xtan(x/2)]_0 ^(2π/3) −2∫_0 ^(2π/3) tan(x/2)d(x/2)=  =2(√3)π−2∫_0 ^( π/3) tan(u)du  But ∫tan(x)dx=ln(sec x)+C  ⇒ ∫_0 ^(√3)  arcsin(((2t)/(1+t^2 )))dt=2(√3)π−2ln(((sec(π/3))/(sec(0))))=  =2(√3)π−2ln(2)  ∫_0 ^(√3)  arcsin(((2t)/(1+t^2 )))dt=2(√3)π−2ln(2)

$${let}\:{t}={tan}\left({x}/\mathrm{2}\right)\:{dt}=\frac{{sec}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}{\mathrm{2}}{dx}\:\Rightarrow{x}=\mathrm{2}{arctan}\left({t}\right) \\ $$$$\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }={sin}\left({x}\right)\Rightarrow\int_{\mathrm{0}} ^{\frac{\mathrm{2}\pi}{\mathrm{3}}} {xd}\left({tan}\left({x}/\mathrm{2}\right)\right) \\ $$$${IBP} \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{2}\pi}{\mathrm{3}}} {xd}\left({tan}\left({x}/\mathrm{2}\right)\right)=\left[{xtan}\left({x}/\mathrm{2}\right)\right]_{\mathrm{0}} ^{\mathrm{2}\pi/\mathrm{3}} −\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}\pi/\mathrm{3}} {tan}\left({x}/\mathrm{2}\right){d}\left({x}/\mathrm{2}\right)= \\ $$$$=\mathrm{2}\sqrt{\mathrm{3}}\pi−\mathrm{2}\int_{\mathrm{0}} ^{\:\pi/\mathrm{3}} {tan}\left({u}\right){du} \\ $$$${But}\:\int{tan}\left({x}\right){dx}={ln}\left({sec}\:{x}\right)+{C} \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:{arcsin}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt}=\mathrm{2}\sqrt{\mathrm{3}}\pi−\mathrm{2}{ln}\left(\frac{{sec}\left(\pi/\mathrm{3}\right)}{{sec}\left(\mathrm{0}\right)}\right)= \\ $$$$=\mathrm{2}\sqrt{\mathrm{3}}\pi−\mathrm{2}{ln}\left(\mathrm{2}\right) \\ $$$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:{arcsin}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt}=\mathrm{2}\sqrt{\mathrm{3}}\pi−\mathrm{2}{ln}\left(\mathrm{2}\right) \\ $$

Commented by turbo msup by abdo last updated on 12/Aug/18

sir alex you must divide the  integral because arcsinx is  defined from [−1,1] to [−(π/2),(π/2)](bijection)  so your final result is not correct

$${sir}\:{alex}\:{you}\:{must}\:{divide}\:{the} \\ $$$${integral}\:{because}\:{arcsinx}\:{is} \\ $$$${defined}\:{from}\:\left[−\mathrm{1},\mathrm{1}\right]\:{to}\:\left[−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right]\left({bijection}\right) \\ $$$${so}\:{your}\:{final}\:{result}\:{is}\:{not}\:{correct} \\ $$

Commented by alex041103 last updated on 12/Aug/18

In that case it is perfectly OK.  Because in the R  arcsin(((2t)/(1+t^2 )))∈[−1,1]

$${In}\:{that}\:{case}\:{it}\:{is}\:{perfectly}\:{OK}. \\ $$$${Because}\:{in}\:{the}\:\mathbb{R} \\ $$$${arcsin}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$

Commented by alex041103 last updated on 12/Aug/18

Commented by alex041103 last updated on 12/Aug/18

Oh...I understand what you mean.  You′re actually right. But...  there are different arcsin functions.  for example there is one for which   arcsin(x)∈[0,2π)...I thought that one  was the one in the problem....a missunderstanding..  thank you for pointing it out for me...

$${Oh}...{I}\:{understand}\:{what}\:{you}\:{mean}. \\ $$$${You}'{re}\:{actually}\:{right}.\:{But}... \\ $$$${there}\:{are}\:{different}\:{arcsin}\:{functions}. \\ $$$${for}\:{example}\:{there}\:{is}\:{one}\:{for}\:{which}\: \\ $$$${arcsin}\left({x}\right)\in\left[\mathrm{0},\mathrm{2}\pi\right)...{I}\:{thought}\:{that}\:{one} \\ $$$${was}\:{the}\:{one}\:{in}\:{the}\:{problem}....{a}\:{missunderstanding}.. \\ $$$${thank}\:{you}\:{for}\:{pointing}\:{it}\:{out}\:{for}\:{me}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com