Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 41985 by Penguin last updated on 16/Aug/18

Prove e^x ≥x+1 ∀x∈R in as many ways  as you can show

$$\mathrm{Prove}\:{e}^{{x}} \geqslant{x}+\mathrm{1}\:\forall{x}\in\mathbb{R}\:\mathrm{in}\:\mathrm{as}\:\mathrm{many}\:\mathrm{ways} \\ $$$$\mathrm{as}\:\mathrm{you}\:\mathrm{can}\:\mathrm{show} \\ $$

Commented by maxmathsup by imad last updated on 16/Aug/18

let f(x) =e^x −x−1 we have   f^′ (x) =e^x −1  so  f^′ (x) =0 ⇔ x=0  and f^′ (x)≥0 ⇔x≥0  f is increasing on [0,+∞[  decreasing on]−∞,0]    x          −∞           0          +∞  f^′ (x)                 −           +  f(x)            decr        incr                we have f(0) =0  lim_(x→−∞) f(x) =lim_(x→−∞) (e^x −x−1) =+∞  lim_(x→+∞) f(x) =lim_(x→+∞) (e^x  −x−1) =lim_(x→+∞)  e^x   =+∞   ⇒  f(x)≥0  ∀ x ∈ R ⇒ e^x ≥ x+1  ∀x∈ R .

$${let}\:{f}\left({x}\right)\:={e}^{{x}} −{x}−\mathrm{1}\:{we}\:{have}\: \\ $$$${f}^{'} \left({x}\right)\:={e}^{{x}} −\mathrm{1}\:\:{so}\:\:{f}^{'} \left({x}\right)\:=\mathrm{0}\:\Leftrightarrow\:{x}=\mathrm{0}\:\:{and}\:{f}^{'} \left({x}\right)\geqslant\mathrm{0}\:\Leftrightarrow{x}\geqslant\mathrm{0} \\ $$$${f}\:{is}\:{increasing}\:{on}\:\left[\mathrm{0},+\infty\left[\:\:{decreasing}\:{on}\right]−\infty,\mathrm{0}\right] \\ $$$$\:\:{x}\:\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${f}\left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:{decr}\:\:\:\:\:\:\:\:{incr}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{we}\:{have}\:{f}\left(\mathrm{0}\right)\:=\mathrm{0} \\ $$$${lim}_{{x}\rightarrow−\infty} {f}\left({x}\right)\:={lim}_{{x}\rightarrow−\infty} \left({e}^{{x}} −{x}−\mathrm{1}\right)\:=+\infty \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:={lim}_{{x}\rightarrow+\infty} \left({e}^{{x}} \:−{x}−\mathrm{1}\right)\:={lim}_{{x}\rightarrow+\infty} \:{e}^{{x}} \:\:=+\infty\:\:\:\Rightarrow \\ $$$${f}\left({x}\right)\geqslant\mathrm{0}\:\:\forall\:{x}\:\in\:{R}\:\Rightarrow\:{e}^{{x}} \geqslant\:{x}+\mathrm{1}\:\:\forall{x}\in\:{R}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Aug/18

p=e^x   q=x+1  p>q  if (dp/dx)>(dq/dx)  now (dp/dx)=e^x      (dq/dx)=1  so e^x −1>0   that means e^x >x+1      (d/dx){(dp/dx)−(dq/dx)}=e^x   when x>0   e^x >0 so curve hold water i,e concave  when x<0  e^x >0   so curve hold water i,e concave  that means e^x >x+1

$${p}={e}^{{x}} \\ $$$${q}={x}+\mathrm{1} \\ $$$${p}>{q}\:\:{if}\:\frac{{dp}}{{dx}}>\frac{{dq}}{{dx}} \\ $$$${now}\:\frac{{dp}}{{dx}}={e}^{{x}} \:\:\:\:\:\frac{{dq}}{{dx}}=\mathrm{1} \\ $$$${so}\:{e}^{{x}} −\mathrm{1}>\mathrm{0}\:\:\:{that}\:{means}\:{e}^{{x}} >{x}+\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$\frac{{d}}{{dx}}\left\{\frac{{dp}}{{dx}}−\frac{{dq}}{{dx}}\right\}={e}^{{x}} \\ $$$${when}\:{x}>\mathrm{0}\:\:\:{e}^{{x}} >\mathrm{0}\:{so}\:{curve}\:{hold}\:{water}\:{i},{e}\:{concave} \\ $$$${when}\:{x}<\mathrm{0}\:\:{e}^{{x}} >\mathrm{0}\:\:\:{so}\:{curve}\:{hold}\:{water}\:{i},{e}\:{concave} \\ $$$${that}\:{means}\:{e}^{{x}} >{x}+\mathrm{1} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Aug/18

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Aug/18

from graph it is clear that e^x −x−1>0 when x>0  and when x<0

$${from}\:{graph}\:{it}\:{is}\:{clear}\:{that}\:{e}^{{x}} −{x}−\mathrm{1}>\mathrm{0}\:{when}\:{x}>\mathrm{0} \\ $$$${and}\:{when}\:{x}<\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com