Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42505 by maxmathsup by imad last updated on 26/Aug/18

calculate  ∫_0 ^∞    ((ln(t))/((1+t)(√t))) dt .

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)\sqrt{{t}}}\:{dt}\:. \\ $$

Commented by maxmathsup by imad last updated on 29/Aug/18

let f(a) = ∫_0 ^∞    (t^(a−1) /(1+t))dt  with  0<a<1   we know that f(a)=(π/(sin(πa)))  we have f(a) = ∫_0 ^∞    (e^((a−1)ln(t)) /(1+t))dt ⇒f^′ (a) =∫_0 ^∞   ((ln(t) t^(a−1) )/(1+t))dt  but  ∫_0 ^∞    ((ln(t)t^(a−1) )/(1+t))dt =((π/(sin(πa))))′ =π((−π cos(πa))/(sin^2 (πa))) =−π^2   ((cos(πa))/(sin^2 (πa)))  we have   ∫_0 ^∞    ((ln(t))/((1+t)(√t)))dt =∫_0 ^∞    ((ln(t)t^(1−(1/2)) )/(1+t))dt =f^′ ((1/2)) =−π^2    ((cos((π/2)))/(sin^2 ((π/2)))) =0 .

$${let}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{with}\:\:\mathrm{0}<{a}<\mathrm{1}\:\:\:{we}\:{know}\:{that}\:{f}\left({a}\right)=\frac{\pi}{{sin}\left(\pi{a}\right)} \\ $$$${we}\:{have}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{\left({a}−\mathrm{1}\right){ln}\left({t}\right)} }{\mathrm{1}+{t}}{dt}\:\Rightarrow{f}^{'} \left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right)\:{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\left(\frac{\pi}{{sin}\left(\pi{a}\right)}\right)'\:=\pi\frac{−\pi\:{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)}\:=−\pi^{\mathrm{2}} \:\:\frac{{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)} \\ $$$${we}\:{have}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)\sqrt{{t}}}{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({t}\right){t}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}+{t}}{dt}\:={f}^{'} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=−\pi^{\mathrm{2}} \:\:\:\frac{{cos}\left(\frac{\pi}{\mathrm{2}}\right)}{{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}\right)}\:=\mathrm{0}\:. \\ $$

Commented by maxmathsup by imad last updated on 29/Aug/18

another way  changement (√t)=x give  ∫_0 ^∞  ((ln(t))/((1+t)(√t)))dt = ∫_0 ^∞   ((ln(x^2 ))/((1+x^2 )x))(2x)dx  =4  ∫_0 ^∞    ((ln(x))/(1+x^2 ))dx let I =∫_0 ^∞   ((ln(x))/(1+x^2 ))dx  I =_(x=(1/u))       − ∫_0 ^∞    ((−ln(u))/(1+(1/u^2 )))(−(du/u^2 )) = −∫_0 ^∞      ((ln(u))/(1+u^2 )) =−I ⇒2I=0 ⇒I=0 so  ∫_0 ^∞     ((ln(t))/((1+t)(√t)))dt =0 .

$${another}\:{way}\:\:{changement}\:\sqrt{{t}}={x}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)\sqrt{{t}}}{dt}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right){x}}\left(\mathrm{2}{x}\right){dx}\:\:=\mathrm{4}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${I}\:=_{{x}=\frac{\mathrm{1}}{{u}}} \:\:\:\:\:\:−\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{−{ln}\left({u}\right)}{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}\left(−\frac{{du}}{{u}^{\mathrm{2}} }\right)\:=\:−\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{ln}\left({u}\right)}{\mathrm{1}+{u}^{\mathrm{2}} }\:=−{I}\:\Rightarrow\mathrm{2}{I}=\mathrm{0}\:\Rightarrow{I}=\mathrm{0}\:{so} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)\sqrt{{t}}}{dt}\:=\mathrm{0}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com