Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 42654 by ajfour last updated on 30/Aug/18

Commented by ajfour last updated on 30/Aug/18

If the red ball is to hit the wall  and then the blue ball, find the  speed u and height h where it  hits the wall. (coefficient of  restitution being e).

$${If}\:{the}\:{red}\:{ball}\:{is}\:{to}\:{hit}\:{the}\:{wall} \\ $$$${and}\:{then}\:{the}\:{blue}\:{ball},\:{find}\:{the} \\ $$$${speed}\:\boldsymbol{{u}}\:{and}\:{height}\:\boldsymbol{{h}}\:{where}\:{it} \\ $$$${hits}\:{the}\:{wall}.\:\left({coefficient}\:{of}\right. \\ $$$$\left.{restitution}\:{being}\:\boldsymbol{{e}}\right). \\ $$

Commented by MrW3 last updated on 03/Sep/18

the question could be modified to:  find the smallest speed of the red ball  such that it can hit the wall and then  the blue ball.

$${the}\:{question}\:{could}\:{be}\:{modified}\:{to}: \\ $$$${find}\:{the}\:{smallest}\:{speed}\:{of}\:{the}\:{red}\:{ball} \\ $$$${such}\:{that}\:{it}\:{can}\:{hit}\:{the}\:{wall}\:{and}\:{then} \\ $$$${the}\:{blue}\:{ball}. \\ $$

Answered by MrW3 last updated on 04/Sep/18

a=u cos θ t_1    ...(i)  h−p=u sin θ t_1 −(1/2) g t_1 ^2     ...(ii)  a+b= eu cos θ t_2     ...(iii)  q−h=(u sin θ−g t_1 ) t_2 −(1/2) g t_2 ^2       ...(iv)    we can solve this only if θ or h is given.  let′s say h is given.    h−p=u sin θ (a/(u cos θ))−(g/2)((a/(u cos θ)))^2   h−p=a tan θ−((a^2 g)/(2u^2  cos^2  θ))  ⇒ h−p=a tan θ−((a^2 g)/(2u^2 ))(1+tan^2  θ)   ...(v)    q−h=(u sin θ−((ag)/(u cos θ)))((a+b)/(eu cos θ))−(g/2)(((a+b)/(eu cos θ)))^2   q−h=((a+b)/e) tan θ−(a+b)(2a+((a+b)/e))(g/(2eu^2  cos^2  θ))  ⇒ q−h=((a+b)/e) tan θ−(a+b)(2a+((a+b)/e))(g/(2eu^2 ))(1+tan^2  θ)   ...(vi)    (iv)×a^2 :   a^2 (q−h)=(((a+b)a^2 )/e) tan θ−((a+b)/e)(2a+((a+b)/e))(a tan θ+p−h)   e^2 a^2 (q−h)=ea^2 (a+b) tan θ−(a+b)(2ea+a+b)(a tan θ+p−h)   a(a+b)(ea+a+b)tan θ= e^2 a^2 (h−q)+(a+b)(2ea+a+b)(h−p)  ⇒tan θ=((e^2 a^2 (h−q)+(a+b)(2ea+a+b)(h−p))/(a(a+b)(ea+a+b)))=λ    from (v):  u=(√((a^2 (1+tan^2  θ)g)/(2(a tan θ−h+p))))  ⇒u=a(√(((1+λ^2 )g)/(2(λa−h+p))))    alternatively:  (v)+(vi):  q−p=(a+((a+b)/e)) tan θ−[a^2 +((a+b)/e)(2a+((a+b)/e))](g/(2u^2 ))(1+tan^2  θ)  q−p=(a+((a+b)/e)) tan θ−(a+((a+b)/e))^2 (g/(2u^2 ))(1+tan^2  θ)  with A=a+((a+b)/e), B=q−p, λ=tan θ  we get  B=Aλ−A^2 (1+λ^2 )(g/(2u^2 ))  ⇒u^2 =((gA^2 )/2)×((1+λ^2 )/(Aλ−B))  let f(λ)=((1+λ^2 )/(Aλ−B))  ((df(λ))/dλ)=((2λ)/(Aλ−B))−((A(1+λ^2 ))/((Aλ−B)^2 ))=0  ⇒((1+λ^2 )/(Aλ−B))=((2λ)/A)  ⇒2λ(Aλ−B)−A(1+λ^2 )=0  ⇒Aλ^2 −2Bλ−A=0  ⇒λ=((B+(√(A^2 +B^2 )))/A)=((q−p)/(a+((a+b)/e)))+(√(1+(((q−p)/(a+((a+b)/e))))^2 ))  ⇒u_(min) ^2 =((gA^2 )/2)×((2λ)/A)=g(B+(√(A^2 +B^2 )))  ⇒u_(min) =(√([(q−p)+(√((a+((a+b)/e))^2 +(q−p)^2 ))]g))  h_m =p+aλ−((a^2 g)/(2u_(min) ^2 ))(1+λ^2 )  h_m =p+aλ−((a^2 (1+λ^2 ))/(2Aλ))  h_m =p+aλ−((a^2 (Aλ−B))/A^2 )  h_m =p+a(1−(a/A))((B/A)+((√(A^2 +B^2 ))/A))+((a^2 B)/A^2 )  ⇒h_m =p+a(1−(a/(a+((a+b)/e))))[((q−p)/(a+((a+b)/e)))+(√(1+(((q−p)/(a+((a+b)/e))))^2 ))]+((a/(a+((a+b)/e))))^2 (q−p)  θ_m =tan^(−1) λ  ⇒θ_m =tan^(−1) [ ((q−p)/(a+((a+b)/e)))+(√(1+(((q−p)/(a+((a+b)/e))))^2 ))]

$${a}={u}\:\mathrm{cos}\:\theta\:{t}_{\mathrm{1}} \:\:\:...\left({i}\right) \\ $$$${h}−{p}={u}\:\mathrm{sin}\:\theta\:{t}_{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\:{g}\:{t}_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:...\left({ii}\right) \\ $$$${a}+{b}=\:{eu}\:\mathrm{cos}\:\theta\:{t}_{\mathrm{2}} \:\:\:\:...\left({iii}\right) \\ $$$${q}−{h}=\left({u}\:\mathrm{sin}\:\theta−{g}\:{t}_{\mathrm{1}} \right)\:{t}_{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\:{g}\:{t}_{\mathrm{2}} ^{\mathrm{2}} \:\:\:\:\:\:...\left({iv}\right) \\ $$$$ \\ $$$${we}\:{can}\:{solve}\:{this}\:{only}\:{if}\:\theta\:{or}\:{h}\:{is}\:{given}. \\ $$$${let}'{s}\:{say}\:{h}\:{is}\:{given}. \\ $$$$ \\ $$$${h}−{p}={u}\:\mathrm{sin}\:\theta\:\frac{{a}}{{u}\:\mathrm{cos}\:\theta}−\frac{{g}}{\mathrm{2}}\left(\frac{{a}}{{u}\:\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \\ $$$${h}−{p}={a}\:\mathrm{tan}\:\theta−\frac{{a}^{\mathrm{2}} {g}}{\mathrm{2}{u}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$\Rightarrow\:{h}−{p}={a}\:\mathrm{tan}\:\theta−\frac{{a}^{\mathrm{2}} {g}}{\mathrm{2}{u}^{\mathrm{2}} }\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\:\:\:...\left({v}\right) \\ $$$$ \\ $$$${q}−{h}=\left({u}\:\mathrm{sin}\:\theta−\frac{{ag}}{{u}\:\mathrm{cos}\:\theta}\right)\frac{{a}+{b}}{{eu}\:\mathrm{cos}\:\theta}−\frac{{g}}{\mathrm{2}}\left(\frac{{a}+{b}}{{eu}\:\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \\ $$$${q}−{h}=\frac{{a}+{b}}{{e}}\:\mathrm{tan}\:\theta−\left({a}+{b}\right)\left(\mathrm{2}{a}+\frac{{a}+{b}}{{e}}\right)\frac{{g}}{\mathrm{2}{eu}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$\Rightarrow\:{q}−{h}=\frac{{a}+{b}}{{e}}\:\mathrm{tan}\:\theta−\left({a}+{b}\right)\left(\mathrm{2}{a}+\frac{{a}+{b}}{{e}}\right)\frac{{g}}{\mathrm{2}{eu}^{\mathrm{2}} }\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\:\:\:...\left({vi}\right) \\ $$$$ \\ $$$$\left({iv}\right)×{a}^{\mathrm{2}} : \\ $$$$\:{a}^{\mathrm{2}} \left({q}−{h}\right)=\frac{\left({a}+{b}\right){a}^{\mathrm{2}} }{{e}}\:\mathrm{tan}\:\theta−\frac{{a}+{b}}{{e}}\left(\mathrm{2}{a}+\frac{{a}+{b}}{{e}}\right)\left({a}\:\mathrm{tan}\:\theta+{p}−{h}\right) \\ $$$$\:{e}^{\mathrm{2}} {a}^{\mathrm{2}} \left({q}−{h}\right)={ea}^{\mathrm{2}} \left({a}+{b}\right)\:\mathrm{tan}\:\theta−\left({a}+{b}\right)\left(\mathrm{2}{ea}+{a}+{b}\right)\left({a}\:\mathrm{tan}\:\theta+{p}−{h}\right) \\ $$$$\:{a}\left({a}+{b}\right)\left({ea}+{a}+{b}\right)\mathrm{tan}\:\theta=\:{e}^{\mathrm{2}} {a}^{\mathrm{2}} \left({h}−{q}\right)+\left({a}+{b}\right)\left(\mathrm{2}{ea}+{a}+{b}\right)\left({h}−{p}\right) \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{{e}^{\mathrm{2}} {a}^{\mathrm{2}} \left({h}−{q}\right)+\left({a}+{b}\right)\left(\mathrm{2}{ea}+{a}+{b}\right)\left({h}−{p}\right)}{{a}\left({a}+{b}\right)\left({ea}+{a}+{b}\right)}=\lambda \\ $$$$ \\ $$$${from}\:\left({v}\right): \\ $$$${u}=\sqrt{\frac{{a}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right){g}}{\mathrm{2}\left({a}\:\mathrm{tan}\:\theta−{h}+{p}\right)}} \\ $$$$\Rightarrow{u}={a}\sqrt{\frac{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right){g}}{\mathrm{2}\left(\lambda{a}−{h}+{p}\right)}} \\ $$$$ \\ $$$${alternatively}: \\ $$$$\left({v}\right)+\left({vi}\right): \\ $$$${q}−{p}=\left({a}+\frac{{a}+{b}}{{e}}\right)\:\mathrm{tan}\:\theta−\left[{a}^{\mathrm{2}} +\frac{{a}+{b}}{{e}}\left(\mathrm{2}{a}+\frac{{a}+{b}}{{e}}\right)\right]\frac{{g}}{\mathrm{2}{u}^{\mathrm{2}} }\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right) \\ $$$${q}−{p}=\left({a}+\frac{{a}+{b}}{{e}}\right)\:\mathrm{tan}\:\theta−\left({a}+\frac{{a}+{b}}{{e}}\right)^{\mathrm{2}} \frac{{g}}{\mathrm{2}{u}^{\mathrm{2}} }\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right) \\ $$$${with}\:{A}={a}+\frac{{a}+{b}}{{e}},\:{B}={q}−{p},\:\lambda=\mathrm{tan}\:\theta \\ $$$${we}\:{get} \\ $$$${B}={A}\lambda−{A}^{\mathrm{2}} \left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\frac{{g}}{\mathrm{2}{u}^{\mathrm{2}} } \\ $$$$\Rightarrow{u}^{\mathrm{2}} =\frac{{gA}^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{1}+\lambda^{\mathrm{2}} }{{A}\lambda−{B}} \\ $$$${let}\:{f}\left(\lambda\right)=\frac{\mathrm{1}+\lambda^{\mathrm{2}} }{{A}\lambda−{B}} \\ $$$$\frac{{df}\left(\lambda\right)}{{d}\lambda}=\frac{\mathrm{2}\lambda}{{A}\lambda−{B}}−\frac{{A}\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)}{\left({A}\lambda−{B}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}+\lambda^{\mathrm{2}} }{{A}\lambda−{B}}=\frac{\mathrm{2}\lambda}{{A}} \\ $$$$\Rightarrow\mathrm{2}\lambda\left({A}\lambda−{B}\right)−{A}\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{A}\lambda^{\mathrm{2}} −\mathrm{2}{B}\lambda−{A}=\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{{B}+\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }}{{A}}=\frac{{q}−{p}}{{a}+\frac{{a}+{b}}{{e}}}+\sqrt{\mathrm{1}+\left(\frac{{q}−{p}}{{a}+\frac{{a}+{b}}{{e}}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{u}_{{min}} ^{\mathrm{2}} =\frac{{gA}^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{2}\lambda}{{A}}={g}\left({B}+\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{u}_{{min}} =\sqrt{\left[\left({q}−{p}\right)+\sqrt{\left({a}+\frac{{a}+{b}}{{e}}\right)^{\mathrm{2}} +\left({q}−{p}\right)^{\mathrm{2}} }\right]{g}} \\ $$$${h}_{{m}} ={p}+{a}\lambda−\frac{{a}^{\mathrm{2}} {g}}{\mathrm{2}{u}_{{min}} ^{\mathrm{2}} }\left(\mathrm{1}+\lambda^{\mathrm{2}} \right) \\ $$$${h}_{{m}} ={p}+{a}\lambda−\frac{{a}^{\mathrm{2}} \left(\mathrm{1}+\lambda^{\mathrm{2}} \right)}{\mathrm{2}{A}\lambda} \\ $$$${h}_{{m}} ={p}+{a}\lambda−\frac{{a}^{\mathrm{2}} \left({A}\lambda−{B}\right)}{{A}^{\mathrm{2}} } \\ $$$${h}_{{m}} ={p}+{a}\left(\mathrm{1}−\frac{{a}}{{A}}\right)\left(\frac{{B}}{{A}}+\frac{\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }}{{A}}\right)+\frac{{a}^{\mathrm{2}} {B}}{{A}^{\mathrm{2}} } \\ $$$$\Rightarrow{h}_{{m}} ={p}+{a}\left(\mathrm{1}−\frac{{a}}{{a}+\frac{{a}+{b}}{{e}}}\right)\left[\frac{{q}−{p}}{{a}+\frac{{a}+{b}}{{e}}}+\sqrt{\mathrm{1}+\left(\frac{{q}−{p}}{{a}+\frac{{a}+{b}}{{e}}}\right)^{\mathrm{2}} }\right]+\left(\frac{{a}}{{a}+\frac{{a}+{b}}{{e}}}\right)^{\mathrm{2}} \left({q}−{p}\right) \\ $$$$\theta_{{m}} =\mathrm{tan}^{−\mathrm{1}} \lambda \\ $$$$\Rightarrow\theta_{{m}} =\mathrm{tan}^{−\mathrm{1}} \left[\:\frac{{q}−{p}}{{a}+\frac{{a}+{b}}{{e}}}+\sqrt{\mathrm{1}+\left(\frac{{q}−{p}}{{a}+\frac{{a}+{b}}{{e}}}\right)^{\mathrm{2}} }\right] \\ $$

Commented by MrW3 last updated on 02/Sep/18

let′s assume the wall is “permeable”,  the ball can go through it instead of  is reflected. let′s consider e=1 (see above).   we can see the ball has different ways to  hit the wall (at point B) and the point C.  i.e. we can not determine both h and u.  one of them must be given.

$${let}'{s}\:{assume}\:{the}\:{wall}\:{is}\:``{permeable}'', \\ $$$${the}\:{ball}\:{can}\:{go}\:{through}\:{it}\:{instead}\:{of} \\ $$$${is}\:{reflected}.\:{let}'{s}\:{consider}\:{e}=\mathrm{1}\:\left({see}\:{above}\right).\: \\ $$$${we}\:{can}\:{see}\:{the}\:{ball}\:{has}\:{different}\:{ways}\:{to} \\ $$$${hit}\:{the}\:{wall}\:\left({at}\:{point}\:{B}\right)\:{and}\:{the}\:{point}\:{C}. \\ $$$${i}.{e}.\:{we}\:{can}\:{not}\:{determine}\:{both}\:{h}\:{and}\:{u}. \\ $$$${one}\:{of}\:{them}\:{must}\:{be}\:{given}. \\ $$

Commented by MrW3 last updated on 04/Sep/18

and we can see there exists a point B  with h=h_m   at which the ball can reach  point C with a minimal initial speed u_(min) .

$${and}\:{we}\:{can}\:{see}\:{there}\:{exists}\:{a}\:{point}\:{B} \\ $$$${with}\:{h}={h}_{{m}} \:\:{at}\:{which}\:{the}\:{ball}\:{can}\:{reach} \\ $$$${point}\:{C}\:{with}\:{a}\:{minimal}\:{initial}\:{speed}\:{u}_{{min}} . \\ $$

Commented by MrW3 last updated on 02/Sep/18

Commented by ajfour last updated on 02/Sep/18

thank you Sir, for the effortful  response; and correcting the  question even. I shall also  try to  solve and match my answer with  yours.

$${thank}\:{you}\:{Sir},\:{for}\:{the}\:{effortful} \\ $$$${response};\:{and}\:{correcting}\:{the} \\ $$$${question}\:{even}.\:{I}\:{shall}\:{also}\:\:{try}\:{to} \\ $$$${solve}\:{and}\:{match}\:{my}\:{answer}\:{with} \\ $$$${yours}. \\ $$

Commented by MrW3 last updated on 03/Sep/18

Commented by MrW3 last updated on 03/Sep/18

following example shows the case:  a=3m, b=2m, e=0.5  p=1m, q=2m  we see at h=3.55m, u_(min) =11.85 m/s

$${following}\:{example}\:{shows}\:{the}\:{case}: \\ $$$${a}=\mathrm{3}{m},\:{b}=\mathrm{2}{m},\:{e}=\mathrm{0}.\mathrm{5} \\ $$$${p}=\mathrm{1}{m},\:{q}=\mathrm{2}{m} \\ $$$${we}\:{see}\:{at}\:{h}=\mathrm{3}.\mathrm{55}{m},\:{u}_{{min}} =\mathrm{11}.\mathrm{85}\:{m}/{s} \\ $$

Commented by ajfour last updated on 03/Sep/18

Awesome Working Sir.

$$\mathcal{A}{wesome}\:\mathcal{W}{orking}\:{Sir}. \\ $$

Answered by ajfour last updated on 04/Sep/18

Since the vertical component of  u suffers no change upon hitting  the wall;   q−p = utsin θ−((gt^2 )/2)       ...(i)  and     t = (a/(ucos θ))+((a+b)/(eucos θ))    ...(ii)  using (ii) in (i):  q−p = usin θ[(a/(ucos θ))+((a+b)/(eucos θ))]                     −(g/2)[(a/(ucos θ))+((a+b)/(eucos θ))]^2   ⇒ q−p = tan θ(a+((a+b)/e))              −(g/(2u^2 ))(1+tan^2 θ)(a+((a+b)/e))^2   if m=tan θ ; q−p=B ; a+((a+b)/e)=A   ((gA^2 )/(2u^2 ))= ((mA−B)/(1+m^2 ))         ....(iii)  For minimum u   ((d(((gA^2 )/(2u^2 ))))/dm)=0   ⇒    A(1+m^2 )=2m(mA−B)  or   Am^2 −2Bm−A=0  ⇒  m=(B/A)+(√(1+(B^2 /A^2 )))  using this value in eq. (iii)  ((gA^2 )/(2u_(min) ^2 )) = ((√(A^2 +B^2 ))/(1+((B/A)+(√(1+(B^2 /A^2 ))) )^2 ))  ⇒ u_(min) ^2 =(g/2)×((A^2 +(B+(√(A^2 +B^2 )) )^2 )/(√(A^2 +B^2 )))  u_(min) ^2 = g((√(A^2 +B^2 ))+B)           = g[(√((a+((a+b)/e))^2 +(q−p)^2 ))+(q−p)]  h=p+am−((a^2 g(1+m^2 ))/(2u_(min) ^2 ))          with a=3 , b=2, e=0.5,    p=1, q=2 , g=10 ,  we have   u_(min) ^2 = 10[(√(170))+1]     u_(min) = (√(140.38)) ≈ 11.85 m/s   m=(1/(13))+(√(1+(1/(169)))) =((1+(√(170)))/(13))≈1.08  h= 1+3×1.08−((45×2.16)/(140.38))    ≈ 3.55 m.

$${Since}\:{the}\:{vertical}\:{component}\:{of} \\ $$$${u}\:{suffers}\:{no}\:{change}\:{upon}\:{hitting} \\ $$$${the}\:{wall}; \\ $$$$\:{q}−{p}\:=\:{ut}\mathrm{sin}\:\theta−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}}\:\:\:\:\:\:\:...\left({i}\right) \\ $$$${and}\:\:\:\:\:{t}\:=\:\frac{{a}}{{u}\mathrm{cos}\:\theta}+\frac{{a}+{b}}{{eu}\mathrm{cos}\:\theta}\:\:\:\:...\left({ii}\right) \\ $$$${using}\:\left({ii}\right)\:{in}\:\left({i}\right): \\ $$$${q}−{p}\:=\:{u}\mathrm{sin}\:\theta\left[\frac{{a}}{{u}\mathrm{cos}\:\theta}+\frac{{a}+{b}}{{eu}\mathrm{cos}\:\theta}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{{g}}{\mathrm{2}}\left[\frac{{a}}{{u}\mathrm{cos}\:\theta}+\frac{{a}+{b}}{{eu}\mathrm{cos}\:\theta}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\:{q}−{p}\:=\:\mathrm{tan}\:\theta\left({a}+\frac{{a}+{b}}{{e}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:−\frac{{g}}{\mathrm{2}{u}^{\mathrm{2}} }\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \theta\right)\left({a}+\frac{{a}+{b}}{{e}}\right)^{\mathrm{2}} \\ $$$${if}\:{m}=\mathrm{tan}\:\theta\:;\:{q}−{p}={B}\:;\:{a}+\frac{{a}+{b}}{{e}}={A} \\ $$$$\:\frac{{gA}^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{2}} }=\:\frac{{mA}−{B}}{\mathrm{1}+{m}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:....\left({iii}\right) \\ $$$${For}\:{minimum}\:\boldsymbol{{u}} \\ $$$$\:\frac{{d}\left(\frac{{gA}^{\mathrm{2}} }{\mathrm{2}{u}^{\mathrm{2}} }\right)}{{dm}}=\mathrm{0}\:\:\:\Rightarrow \\ $$$$\:\:{A}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)=\mathrm{2}{m}\left({mA}−{B}\right) \\ $$$${or}\:\:\:{Am}^{\mathrm{2}} −\mathrm{2}{Bm}−{A}=\mathrm{0} \\ $$$$\Rightarrow\:\:{m}=\frac{{B}}{{A}}+\sqrt{\mathrm{1}+\frac{{B}^{\mathrm{2}} }{{A}^{\mathrm{2}} }} \\ $$$${using}\:{this}\:{value}\:{in}\:{eq}.\:\left({iii}\right) \\ $$$$\frac{{gA}^{\mathrm{2}} }{\mathrm{2}{u}_{{min}} ^{\mathrm{2}} }\:=\:\frac{\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }}{\mathrm{1}+\left(\frac{{B}}{{A}}+\sqrt{\mathrm{1}+\frac{{B}^{\mathrm{2}} }{{A}^{\mathrm{2}} }}\:\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:{u}_{{min}} ^{\mathrm{2}} =\frac{{g}}{\mathrm{2}}×\frac{{A}^{\mathrm{2}} +\left({B}+\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }\:\right)^{\mathrm{2}} }{\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }} \\ $$$${u}_{{min}} ^{\mathrm{2}} =\:{g}\left(\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }+{B}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:{g}\left[\sqrt{\left({a}+\frac{{a}+{b}}{{e}}\right)^{\mathrm{2}} +\left({q}−{p}\right)^{\mathrm{2}} }+\left({q}−{p}\right)\right] \\ $$$${h}={p}+{am}−\frac{{a}^{\mathrm{2}} {g}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)}{\mathrm{2}{u}_{{min}} ^{\mathrm{2}} } \\ $$$$ \\ $$$$\:\:\:\:\:\:{with}\:{a}=\mathrm{3}\:,\:{b}=\mathrm{2},\:{e}=\mathrm{0}.\mathrm{5}, \\ $$$$\:\:{p}=\mathrm{1},\:{q}=\mathrm{2}\:,\:{g}=\mathrm{10}\:,\:\:{we}\:{have} \\ $$$$\:{u}_{{min}} ^{\mathrm{2}} =\:\mathrm{10}\left[\sqrt{\mathrm{170}}+\mathrm{1}\right] \\ $$$$\:\:\:{u}_{{min}} =\:\sqrt{\mathrm{140}.\mathrm{38}}\:\approx\:\mathrm{11}.\mathrm{85}\:{m}/{s}\: \\ $$$${m}=\frac{\mathrm{1}}{\mathrm{13}}+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{169}}}\:=\frac{\mathrm{1}+\sqrt{\mathrm{170}}}{\mathrm{13}}\approx\mathrm{1}.\mathrm{08} \\ $$$${h}=\:\mathrm{1}+\mathrm{3}×\mathrm{1}.\mathrm{08}−\frac{\mathrm{45}×\mathrm{2}.\mathrm{16}}{\mathrm{140}.\mathrm{38}} \\ $$$$\:\:\approx\:\mathrm{3}.\mathrm{55}\:{m}. \\ $$$$ \\ $$

Commented by ajfour last updated on 03/Sep/18

Sir, please resolve the mismatch!

$${Sir},\:{please}\:{resolve}\:{the}\:{mismatch}! \\ $$

Commented by MrW3 last updated on 03/Sep/18

it can be simplified to:  u_(min) ^2 =g(B+(√(A^2 +B^2 )))  u_(min) ^2 =g[(q−p)+(√((a+((a+b)/e))^2 +(q−p)^2 ))]  =10×(1+(√(170)))  ⇒u_(min) =11.85 m/s  I′ll check my working later.

$${it}\:{can}\:{be}\:{simplified}\:{to}: \\ $$$${u}_{{min}} ^{\mathrm{2}} ={g}\left({B}+\sqrt{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }\right) \\ $$$${u}_{{min}} ^{\mathrm{2}} ={g}\left[\left({q}−{p}\right)+\sqrt{\left({a}+\frac{{a}+{b}}{{e}}\right)^{\mathrm{2}} +\left({q}−{p}\right)^{\mathrm{2}} }\right] \\ $$$$=\mathrm{10}×\left(\mathrm{1}+\sqrt{\mathrm{170}}\right) \\ $$$$\Rightarrow{u}_{{min}} =\mathrm{11}.\mathrm{85}\:{m}/{s} \\ $$$${I}'{ll}\:{check}\:{my}\:{working}\:{later}. \\ $$

Commented by MrW3 last updated on 04/Sep/18

your solution is best! short and clear.

$${your}\:{solution}\:{is}\:{best}!\:{short}\:{and}\:{clear}. \\ $$

Commented by MrW3 last updated on 03/Sep/18

I found a mistake in my working. it′s  fixed. now we have the same result.

$${I}\:{found}\:{a}\:{mistake}\:{in}\:{my}\:{working}.\:{it}'{s} \\ $$$${fixed}.\:{now}\:{we}\:{have}\:{the}\:{same}\:{result}. \\ $$

Commented by ajfour last updated on 04/Sep/18

thanks Sir, corrected.

$${thanks}\:{Sir},\:{corrected}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com