Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42796 by maxmathsup by imad last updated on 02/Sep/18

calculate I = ∫_0 ^1   (x^2 /(1+x^2 )) arctan(x)dx

$${calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{arctan}\left({x}\right){dx} \\ $$

Commented by maxmathsup by imad last updated on 04/Sep/18

we have  I = ∫_0 ^1  ((1+x^2 −1)/(1+x^2 )) arctan(x)dx= ∫_0 ^1  arctanx −∫_0 ^1   ((arctanx)/(1+x^2 ))dx but  by parts ∫_0 ^1  arctanxdx =[x arctanx]_0 ^1  −∫_0 ^1  (x/(1+x^2 ))dx  =(π/4) −[(1/2)ln(1+x^2 )]_0 ^1  =(π/4) −((ln(2))/2) also by parts u^′  =(1/(1+x^2 )) and v=arctan(x)  ∫_0 ^1    ((arctan(x))/(1+x^2 )) dx =  [arctan^2 x]_0 ^1  −∫_0 ^1  ((arctanx)/(1+x^2 )) dx ⇒  2 ∫_0 ^1   ((arctan(x))/(1+x^2 ))dx =(π^2 /(16)) ⇒∫_0 ^1   ((arctan(x))/(1+x^2 ))dx =(π^2 /(32)) ⇒  I  =(π/4) −((ln(2))/2) −(π^2 /(32)) .

$${we}\:{have}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{arctan}\left({x}\right){dx}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctanx}\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctanx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{but} \\ $$$${by}\:{parts}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctanxdx}\:=\left[{x}\:{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\pi}{\mathrm{4}}\:−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:{also}\:{by}\:{parts}\:{u}^{'} \:=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{and}\:{v}={arctan}\left({x}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:=\:\:\left[{arctan}^{\mathrm{2}} {x}\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctanx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\Rightarrow \\ $$$$\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{32}}\:\Rightarrow \\ $$$${I}\:\:=\frac{\pi}{\mathrm{4}}\:−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{32}}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18

t=tan^(−1) x   dt=(dx/(1+x^2 ))  ∫_0 ^(Π/4) ((tan^2 t×t)/)dt  ∫_0 ^(Π/4) (sec^2 t−1)t dt  ∫_0 ^(Π/4) tsec^2 tdt−∫_0 ^(Π/4) tdt  ∣ttant−lnsect−(t^2 /2)∣_0 ^(Π/4)   (Π/4)−(1/2)ln2−(Π^2 /(32))

$${t}={tan}^{−\mathrm{1}} {x}\:\:\:{dt}=\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} \frac{{tan}^{\mathrm{2}} {t}×{t}}{}{dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} \left({sec}^{\mathrm{2}} {t}−\mathrm{1}\right){t}\:{dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} {tsec}^{\mathrm{2}} {tdt}−\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} {tdt} \\ $$$$\mid{ttant}−{lnsect}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\mid_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} \\ $$$$\frac{\Pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}−\frac{\prod^{\mathrm{2}} }{\mathrm{32}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com