Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 42863 by ajfour last updated on 03/Sep/18

Commented by ajfour last updated on 04/Sep/18

The two parabolas have a common  vertex and have the same distance  from vertex to focus ′a′.  Find the angle 𝛉 between their  axes if their branches that are  arrow marked also meet at infinity.

$${The}\:{two}\:{parabolas}\:{have}\:{a}\:{common} \\ $$$${vertex}\:{and}\:{have}\:{the}\:{same}\:{distance} \\ $$$${from}\:{vertex}\:{to}\:{focus}\:'\boldsymbol{{a}}'. \\ $$$${Find}\:{the}\:{angle}\:\boldsymbol{\theta}\:{between}\:{their} \\ $$$${axes}\:{if}\:{their}\:{branches}\:{that}\:{are} \\ $$$${arrow}\:{marked}\:{also}\:{meet}\:{at}\:{infinity}. \\ $$

Commented by MJS last updated on 04/Sep/18

they will always intersect in a real point except  θ=180°

$$\mathrm{they}\:\mathrm{will}\:\mathrm{always}\:\mathrm{intersect}\:\mathrm{in}\:\mathrm{a}\:\mathrm{real}\:\mathrm{point}\:\mathrm{except} \\ $$$$\theta=\mathrm{180}° \\ $$

Commented by MrW3 last updated on 04/Sep/18

what does it mean “they meet at infinity  also”?

$${what}\:{does}\:{it}\:{mean}\:``{they}\:{meet}\:{at}\:{infinity} \\ $$$${also}''? \\ $$

Commented by ajfour last updated on 04/Sep/18

they already intersect at the vertex.  So that they meet also at x→∞,  find θ .

$${they}\:{already}\:{intersect}\:{at}\:{the}\:{vertex}. \\ $$$${So}\:{that}\:{they}\:{meet}\:{also}\:{at}\:{x}\rightarrow\infty, \\ $$$${find}\:\theta\:. \\ $$

Commented by MJS last updated on 04/Sep/18

I guess the idea is, the left branch of the red  one meets the right branch of the blue one  “at infinity”, like we might think the branches  of a hyperbola cross their ways “at infinity”

$$\mathrm{I}\:\mathrm{guess}\:\mathrm{the}\:\mathrm{idea}\:\mathrm{is},\:\mathrm{the}\:\mathrm{left}\:\mathrm{branch}\:\mathrm{of}\:\mathrm{the}\:\mathrm{red} \\ $$$$\mathrm{one}\:\mathrm{meets}\:\mathrm{the}\:\mathrm{right}\:\mathrm{branch}\:\mathrm{of}\:\mathrm{the}\:\mathrm{blue}\:\mathrm{one} \\ $$$$``\mathrm{at}\:\mathrm{infinity}'',\:\mathrm{like}\:\mathrm{we}\:\mathrm{might}\:\mathrm{think}\:\mathrm{the}\:\mathrm{branches} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{cross}\:\mathrm{their}\:\mathrm{ways}\:``\mathrm{at}\:\mathrm{infinity}'' \\ $$

Commented by MJS last updated on 04/Sep/18

think it this way:  start with θ=90° and then slowly turn it  counterclockwise towards θ=0°  we′ll always get a real intersection except  at θ=0° where the red branch “loses contact”  of the right blue one but at the same moment  becomes one with the left one...

$$\mathrm{think}\:\mathrm{it}\:\mathrm{this}\:\mathrm{way}: \\ $$$$\mathrm{start}\:\mathrm{with}\:\theta=\mathrm{90}°\:\mathrm{and}\:\mathrm{then}\:\mathrm{slowly}\:\mathrm{turn}\:\mathrm{it} \\ $$$$\mathrm{counterclockwise}\:\mathrm{towards}\:\theta=\mathrm{0}° \\ $$$$\mathrm{we}'\mathrm{ll}\:\mathrm{always}\:\mathrm{get}\:\mathrm{a}\:\mathrm{real}\:\mathrm{intersection}\:\mathrm{except} \\ $$$$\mathrm{at}\:\theta=\mathrm{0}°\:\mathrm{where}\:\mathrm{the}\:\mathrm{red}\:\mathrm{branch}\:``\mathrm{loses}\:\mathrm{contact}'' \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{right}\:\mathrm{blue}\:\mathrm{one}\:\mathrm{but}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{moment} \\ $$$$\mathrm{becomes}\:\mathrm{one}\:\mathrm{with}\:\mathrm{the}\:\mathrm{left}\:\mathrm{one}... \\ $$

Commented by MJS last updated on 04/Sep/18

to see what happens at infinity mirror the  plain at the circle x^2 +y^2 =1  P=(r, θ) → P^∗ =((1/r), θ)   ((t),((f(t))) ) →  (((t/(t^2 +f^2 (t)))),(((f(t))/(t^2 +f^2 (t)))) )  a hyperbola turns into a lemniscate, it has  got 2 directions (=the directions of the  asymptotes)  a parabola turns into a round shape with  one tip in the center  ((0),(0) ), it has got only one  direction, its axis of symmetry. you can imagine  it as an ellipse with the 2^(nd)  focus in infinity

$$\mathrm{to}\:\mathrm{see}\:\mathrm{what}\:\mathrm{happens}\:\mathrm{at}\:\mathrm{infinity}\:\mathrm{mirror}\:\mathrm{the} \\ $$$$\mathrm{plain}\:\mathrm{at}\:\mathrm{the}\:\mathrm{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${P}=\left({r},\:\theta\right)\:\rightarrow\:{P}^{\ast} =\left(\frac{\mathrm{1}}{{r}},\:\theta\right) \\ $$$$\begin{pmatrix}{{t}}\\{{f}\left({t}\right)}\end{pmatrix}\:\rightarrow\:\begin{pmatrix}{\frac{{t}}{{t}^{\mathrm{2}} +{f}^{\mathrm{2}} \left({t}\right)}}\\{\frac{{f}\left({t}\right)}{{t}^{\mathrm{2}} +{f}^{\mathrm{2}} \left({t}\right)}}\end{pmatrix} \\ $$$$\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{turns}\:\mathrm{into}\:\mathrm{a}\:\mathrm{lemniscate},\:\mathrm{it}\:\mathrm{has} \\ $$$$\mathrm{got}\:\mathrm{2}\:\mathrm{directions}\:\left(=\mathrm{the}\:\mathrm{directions}\:\mathrm{of}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{asymptotes}\right) \\ $$$$\mathrm{a}\:\mathrm{parabola}\:\mathrm{turns}\:\mathrm{into}\:\mathrm{a}\:\mathrm{round}\:\mathrm{shape}\:\mathrm{with} \\ $$$$\mathrm{one}\:\mathrm{tip}\:\mathrm{in}\:\mathrm{the}\:\mathrm{center}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix},\:\mathrm{it}\:\mathrm{has}\:\mathrm{got}\:\mathrm{only}\:\mathrm{one} \\ $$$$\mathrm{direction},\:\mathrm{its}\:\mathrm{axis}\:\mathrm{of}\:\mathrm{symmetry}.\:\mathrm{you}\:\mathrm{can}\:\mathrm{imagine} \\ $$$$\mathrm{it}\:\mathrm{as}\:\mathrm{an}\:\mathrm{ellipse}\:\mathrm{with}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{focus}\:\mathrm{in}\:\mathrm{infinity} \\ $$

Answered by MJS last updated on 04/Sep/18

y=ax^2   x → xcos θ −ysin θ  y → xsin θ +ycos θ  y=ax^2  → y=(x/(tan θ))+((cos θ)/(a(1−cos 2θ)))±((√(2(8axsin θ +cos 2θ +1)))/(2a(1−cos 2θ)))  and this is defined for x≥−((1+cos 2θ)/(8asin θ)) with θ>0  so no matter how small ∣θ∣ is, the left branch  of the red parabola will be defined in  [−((1+cos 2θ)/(8asin θ)); +∞[ ⇒ it will intersect the right  branch of the blue parabola

$${y}={ax}^{\mathrm{2}} \\ $$$${x}\:\rightarrow\:{x}\mathrm{cos}\:\theta\:−{y}\mathrm{sin}\:\theta \\ $$$${y}\:\rightarrow\:{x}\mathrm{sin}\:\theta\:+{y}\mathrm{cos}\:\theta \\ $$$${y}={ax}^{\mathrm{2}} \:\rightarrow\:{y}=\frac{{x}}{\mathrm{tan}\:\theta}+\frac{\mathrm{cos}\:\theta}{{a}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta\right)}\pm\frac{\sqrt{\mathrm{2}\left(\mathrm{8}{ax}\mathrm{sin}\:\theta\:+\mathrm{cos}\:\mathrm{2}\theta\:+\mathrm{1}\right)}}{\mathrm{2}{a}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta\right)} \\ $$$$\mathrm{and}\:\mathrm{this}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:{x}\geqslant−\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{8}{a}\mathrm{sin}\:\theta}\:\mathrm{with}\:\theta>\mathrm{0} \\ $$$$\mathrm{so}\:\mathrm{no}\:\mathrm{matter}\:\mathrm{how}\:\mathrm{small}\:\mid\theta\mid\:\mathrm{is},\:\mathrm{the}\:\mathrm{left}\:\mathrm{branch} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{red}\:\mathrm{parabola}\:\mathrm{will}\:\mathrm{be}\:\mathrm{defined}\:\mathrm{in} \\ $$$$\left[−\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{8}{a}\mathrm{sin}\:\theta};\:+\infty\left[\:\Rightarrow\:\mathrm{it}\:\mathrm{will}\:\mathrm{intersect}\:\mathrm{the}\:\mathrm{right}\right.\right. \\ $$$$\mathrm{branch}\:\mathrm{of}\:\mathrm{the}\:\mathrm{blue}\:\mathrm{parabola} \\ $$

Answered by MrW3 last updated on 04/Sep/18

let′s say eqn. of original parabola is  y=cx^2  with c=(1/(4a))  the eqn. of rotated parabola is  x sin θ+y cos θ=c (x cos θ−y sin θ)^2     intersection point (h,k):  h sin θ+ch^2  cos θ=c (h cos θ−ch^2  sin θ)^2   sin θ+ch cos θ=ch (cos θ−ch sin θ)^2   with λ=ch≠0  sin θ+λ cos θ (1−cos θ)+2λ^2  sin θ cos θ−λ^3  sin^2  θ=0  sin^2  θ=((sin θ)/λ^3 )+ ((cos θ (1−cos θ))/λ^2 )+((sin 2θ)/λ)  λ→∞ ⇒ sin θ→0  i.e. such that the parabolas meet at infinity,  θ must equal 0.

$${let}'{s}\:{say}\:{eqn}.\:{of}\:{original}\:{parabola}\:{is} \\ $$$${y}={cx}^{\mathrm{2}} \:{with}\:{c}=\frac{\mathrm{1}}{\mathrm{4}{a}} \\ $$$${the}\:{eqn}.\:{of}\:{rotated}\:{parabola}\:{is} \\ $$$${x}\:\mathrm{sin}\:\theta+{y}\:\mathrm{cos}\:\theta={c}\:\left({x}\:\mathrm{cos}\:\theta−{y}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$ \\ $$$${intersection}\:{point}\:\left({h},{k}\right): \\ $$$${h}\:\mathrm{sin}\:\theta+{ch}^{\mathrm{2}} \:\mathrm{cos}\:\theta={c}\:\left({h}\:\mathrm{cos}\:\theta−{ch}^{\mathrm{2}} \:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$\mathrm{sin}\:\theta+{ch}\:\mathrm{cos}\:\theta={ch}\:\left(\mathrm{cos}\:\theta−{ch}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$${with}\:\lambda={ch}\neq\mathrm{0} \\ $$$$\mathrm{sin}\:\theta+\lambda\:\mathrm{cos}\:\theta\:\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{2}\lambda^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta−\lambda^{\mathrm{3}} \:\mathrm{sin}^{\mathrm{2}} \:\theta=\mathrm{0} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\theta=\frac{\mathrm{sin}\:\theta}{\lambda^{\mathrm{3}} }+\:\frac{\mathrm{cos}\:\theta\:\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\lambda^{\mathrm{2}} }+\frac{\mathrm{sin}\:\mathrm{2}\theta}{\lambda} \\ $$$$\lambda\rightarrow\infty\:\Rightarrow\:\mathrm{sin}\:\theta\rightarrow\mathrm{0} \\ $$$${i}.{e}.\:{such}\:{that}\:{the}\:{parabolas}\:{meet}\:{at}\:{infinity}, \\ $$$$\theta\:{must}\:{equal}\:\mathrm{0}. \\ $$

Commented by ajfour last updated on 04/Sep/18

Thank you Sir MjS, Sir MrW,   i view it better and correct now  with my mind′s eye now.All   answers and comments were  helpful.  A parabola goes parallel to its  axis much away from its vertex.

$${Thank}\:{you}\:{Sir}\:{MjS},\:{Sir}\:{MrW},\: \\ $$$${i}\:{view}\:{it}\:{better}\:{and}\:{correct}\:{now} \\ $$$${with}\:{my}\:{mind}'{s}\:{eye}\:{now}.{All}\: \\ $$$${answers}\:{and}\:{comments}\:{were} \\ $$$${helpful}. \\ $$$${A}\:{parabola}\:{goes}\:{parallel}\:{to}\:{its} \\ $$$${axis}\:{much}\:{away}\:{from}\:{its}\:{vertex}. \\ $$

Commented by MJS last updated on 04/Sep/18

as always you′re welcome

$$\mathrm{as}\:\mathrm{always}\:\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com