Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43170 by maxmathsup by imad last updated on 07/Sep/18

let A_n = ∫_0 ^∞   [n e^(−x) ]dx  with n integr natural.  1) calculate A_n   2) find lim_(n→+∞)  A_n .

$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\left[{n}\:{e}^{−{x}} \right]{dx}\:\:{with}\:{n}\:{integr}\:{natural}. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} . \\ $$

Commented by alex041103 last updated on 08/Sep/18

is [] the whole part function  e.g. [2.67]=2???

$${is}\:\left[\right]\:{the}\:{whole}\:{part}\:{function} \\ $$$${e}.{g}.\:\left[\mathrm{2}.\mathrm{67}\right]=\mathrm{2}??? \\ $$

Commented by maxmathsup by imad last updated on 08/Sep/18

look  sir alex for all x from R  x=[x] +r with  0≤r<1 and if x ∈Z  [x]=x   we have 2,67 =2 +0,67  and 0,67 ∈[0,1[ ⇒[2,67]=2 .also we have  [x]≤x<[x] +1 .

$${look}\:\:{sir}\:{alex}\:{for}\:{all}\:{x}\:{from}\:{R}\:\:{x}=\left[{x}\right]\:+{r}\:{with}\:\:\mathrm{0}\leqslant{r}<\mathrm{1}\:{and}\:{if}\:{x}\:\in{Z} \\ $$$$\left[{x}\right]={x}\:\:\:{we}\:{have}\:\mathrm{2},\mathrm{67}\:=\mathrm{2}\:+\mathrm{0},\mathrm{67}\:\:{and}\:\mathrm{0},\mathrm{67}\:\in\left[\mathrm{0},\mathrm{1}\left[\:\Rightarrow\left[\mathrm{2},\mathrm{67}\right]=\mathrm{2}\:.{also}\:{we}\:{have}\right.\right. \\ $$$$\left[{x}\right]\leqslant{x}<\left[{x}\right]\:+\mathrm{1}\:. \\ $$

Commented by maxmathsup by imad last updated on 09/Sep/18

1) changement ne^(−x) =t give e^(−x) =(t/n)  ⇒−x =ln(t)−ln(n) ⇒−dx=(dt/t)  and A_n = −∫_0 ^n  [t](−(dt/t)) = ∫_0 ^n    (([t])/t)dt = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)   (k/t)dt  =Σ_(k=0) ^(n−1)  k {ln(k+1)−ln(k)} = Σ_(k=1) ^n  k{ln(k+1)−ln(k)}  ⇒A_n = Σ_(k=1) ^n  k ln(((k+1)/k)) .  2) we have  A_n =Σ_(k=1) ^n  k ln(1+(1/k))    but    ln(1+x) = x−(x^2 /2) +o(x^3 )  x−(x^2 /2) ≤ln(1+x)≤x ⇒(1/k)−(1/(2k^2 ))≤ln(1+(1/k))≤(1/k) ⇒  k ln(1+(1/k))≥1− (1/(2k)) ⇒ A_n  ≥ Σ_(k=1) ^n (1−(1/(2k))) ⇒A_n ≥ n−(1/2) H_n   but H_n = ln(n)+γ +o((1/n)) ⇒n−(1/2) H_n =n−(1/2)ln(n)−(γ/2) +o((1/n)) but  lim_(n→+∞)   n−((ln(n))/2) =lim_(n→+∞)  n(1−((ln(n))/(2n)))=+∞ ⇒lim_(n→+∞) A_n =+∞ .

$$\left.\mathrm{1}\right)\:{changement}\:{ne}^{−{x}} ={t}\:{give}\:{e}^{−{x}} =\frac{{t}}{{n}}\:\:\Rightarrow−{x}\:={ln}\left({t}\right)−{ln}\left({n}\right)\:\Rightarrow−{dx}=\frac{{dt}}{{t}} \\ $$$${and}\:{A}_{{n}} =\:−\int_{\mathrm{0}} ^{{n}} \:\left[{t}\right]\left(−\frac{{dt}}{{t}}\right)\:=\:\int_{\mathrm{0}} ^{{n}} \:\:\:\frac{\left[{t}\right]}{{t}}{dt}\:=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{k}}{{t}}{dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:\left\{{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\right\}\:=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\left\{{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\right\} \\ $$$$\Rightarrow{A}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\:{ln}\left(\frac{{k}+\mathrm{1}}{{k}}\right)\:. \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:\:{A}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\:\:\:\:{but}\:\: \\ $$$${ln}\left(\mathrm{1}+{x}\right)\:=\:{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{3}} \right)\:\:{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x}\:\Rightarrow\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} }\leqslant{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\leqslant\frac{\mathrm{1}}{{k}}\:\Rightarrow \\ $$$${k}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\geqslant\mathrm{1}−\:\frac{\mathrm{1}}{\mathrm{2}{k}}\:\Rightarrow\:{A}_{{n}} \:\geqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right)\:\Rightarrow{A}_{{n}} \geqslant\:{n}−\frac{\mathrm{1}}{\mathrm{2}}\:{H}_{{n}} \\ $$$${but}\:{H}_{{n}} =\:{ln}\left({n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{n}−\frac{\mathrm{1}}{\mathrm{2}}\:{H}_{{n}} ={n}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({n}\right)−\frac{\gamma}{\mathrm{2}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:{but} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{n}−\frac{{ln}\left({n}\right)}{\mathrm{2}}\:={lim}_{{n}\rightarrow+\infty} \:{n}\left(\mathrm{1}−\frac{{ln}\left({n}\right)}{\mathrm{2}{n}}\right)=+\infty\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {A}_{{n}} =+\infty\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Sep/18

∫_0 ^(log_e n) [ne^(−x) ]dx+∫_(log_e n) ^∞ [ne^(−x) ]dx  now ne^(−x) =1  e^(−x) =n^(−1)   e^x =n  x=log_e n  when x=log_e n  ne^(−x) =1  ∫_0 ^(log_e n) 1×dx+∫_0 ^∞ [ne^(−x) ]dx  =∣x∣_0 ^(log_e n) +0  =log_e n

$$\int_{\mathrm{0}} ^{{log}_{{e}} {n}} \left[{ne}^{−{x}} \right]{dx}+\int_{{log}_{{e}} {n}} ^{\infty} \left[{ne}^{−{x}} \right]{dx} \\ $$$${now}\:{ne}^{−{x}} =\mathrm{1} \\ $$$${e}^{−{x}} ={n}^{−\mathrm{1}} \\ $$$${e}^{{x}} ={n} \\ $$$${x}={log}_{{e}} {n}\:\:{when}\:{x}={log}_{{e}} {n}\:\:{ne}^{−{x}} =\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{{log}_{{e}} {n}} \mathrm{1}×{dx}+\int_{\mathrm{0}} ^{\infty} \left[{ne}^{−{x}} \right]{dx} \\ $$$$=\mid{x}\mid_{\mathrm{0}} ^{{log}_{{e}} {n}} +\mathrm{0} \\ $$$$={log}_{{e}} {n} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com