Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 43902 by ajfour last updated on 17/Sep/18

(√(a−b)) + (√(a+b)) = c  (√(a−c)) + (√(a+c)) = b  Solve for real b, and c ; in terms   of real a.

$$\sqrt{{a}−{b}}\:+\:\sqrt{{a}+{b}}\:=\:{c} \\ $$$$\sqrt{{a}−{c}}\:+\:\sqrt{{a}+{c}}\:=\:{b} \\ $$$${Solve}\:{for}\:{real}\:{b},\:{and}\:{c}\:;\:{in}\:{terms}\: \\ $$$${of}\:{real}\:{a}. \\ $$

Commented by MrW3 last updated on 17/Sep/18

a≥2  b=c=2(√(a−1))

$${a}\geqslant\mathrm{2} \\ $$$${b}={c}=\mathrm{2}\sqrt{{a}−\mathrm{1}} \\ $$

Commented by ajfour last updated on 17/Sep/18

This is certainly right sir;  no  other real answers even, Sir ?

$${This}\:{is}\:{certainly}\:{right}\:{sir};\:\:{no} \\ $$$${other}\:{real}\:{answers}\:{even},\:{Sir}\:? \\ $$

Commented by LYCON TRIX last updated on 17/Sep/18

I′m impressed to see this question  I′ll make this question featured in NS7UC

$$\mathrm{I}'\mathrm{m}\:\mathrm{impressed}\:\mathrm{to}\:\mathrm{see}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{make}\:\mathrm{this}\:\mathrm{question}\:\mathrm{featured}\:\mathrm{in}\:\mathrm{NS7UC} \\ $$

Commented by LYCON TRIX last updated on 17/Sep/18

what if I said that   Solve for a in terms of b and c   (a , b , c ) ∈ R

$$\mathrm{what}\:\mathrm{if}\:\mathrm{I}\:\mathrm{said}\:\mathrm{that}\: \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{a}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{b}\:\mathrm{and}\:\mathrm{c}\: \\ $$$$\left(\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}\:\right)\:\in\:\mathrm{R} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Sep/18

b=acos2α   c=acos2β  (√(2a)) sinα+(√(2a))  cosα=acos2β  ((sinα+cosα)/(cos2β)).=(((√a) )/((√2) ))  ((sinβ+cosβ)/(cos2α))=((√a)/(√2))  ((sinα+cosα)/(cos2β))=((sinβ+cosβ)/(cos2α))  (√(1+sin2α)) cos2α=(√(1+sin2β))  cos2β  (√(1+((2t_1 )/(1+t_1 ^2 ))))  ×((1−t_1 ^2 )/(1+t_1 ^2 ))=(√(1+((2t_2 )/(1+t_2 ^2 )))) ×((1−t_2 ^2 )/(1+t_2 ^2 ))  ((1+t_1 ×1−t_1 ^2 )/((1+t_1 ^2 )^(3/2) ))=((1+t_2 ^2 ×1−t_2 ^2 )/((1+t_2 )^(3/2) ))  (((1+t_1 )^2 ×(1−t_1 ))/((1+t_1 ^2 )^(3/2) ))=(((1+t_2 ^ )^2 ×(1−t_2 ))/((1+t_2 )^(3/2) ))  (((1+t_1 )/(1+t_2 )))^2 ×((1−t_1 )/(1−t_2 ))=(((1+t_1 ^2 )/(1+t_2 ^2 )))^(3/2)   t_1 =tanα   t_2 =tanβ  contd....

$${b}={acos}\mathrm{2}\alpha\:\:\:{c}={acos}\mathrm{2}\beta \\ $$$$\sqrt{\mathrm{2}{a}}\:{sin}\alpha+\sqrt{\mathrm{2}{a}}\:\:{cos}\alpha={acos}\mathrm{2}\beta \\ $$$$\frac{{sin}\alpha+{cos}\alpha}{{cos}\mathrm{2}\beta}.=\frac{\sqrt{{a}}\:}{\sqrt{\mathrm{2}}\:} \\ $$$$\frac{{sin}\beta+{cos}\beta}{{cos}\mathrm{2}\alpha}=\frac{\sqrt{{a}}}{\sqrt{\mathrm{2}}} \\ $$$$\frac{{sin}\alpha+{cos}\alpha}{{cos}\mathrm{2}\beta}=\frac{{sin}\beta+{cos}\beta}{{cos}\mathrm{2}\alpha} \\ $$$$\sqrt{\mathrm{1}+{sin}\mathrm{2}\alpha}\:{cos}\mathrm{2}\alpha=\sqrt{\mathrm{1}+{sin}\mathrm{2}\beta}\:\:{cos}\mathrm{2}\beta \\ $$$$\sqrt{\mathrm{1}+\frac{\mathrm{2}{t}_{\mathrm{1}} }{\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} }}\:\:×\frac{\mathrm{1}−{t}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} }=\sqrt{\mathrm{1}+\frac{\mathrm{2}{t}_{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{2}} ^{\mathrm{2}} }}\:×\frac{\mathrm{1}−{t}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{2}} ^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}+{t}_{\mathrm{1}} ×\mathrm{1}−{t}_{\mathrm{1}} ^{\mathrm{2}} }{\left(\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\frac{\mathrm{1}+{t}_{\mathrm{2}} ^{\mathrm{2}} ×\mathrm{1}−{t}_{\mathrm{2}} ^{\mathrm{2}} }{\left(\mathrm{1}+{t}_{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\frac{\left(\mathrm{1}+{t}_{\mathrm{1}} \right)^{\mathrm{2}} ×\left(\mathrm{1}−{t}_{\mathrm{1}} \right)}{\left(\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\frac{\left(\mathrm{1}+{t}_{\mathrm{2}} ^{} \right)^{\mathrm{2}} ×\left(\mathrm{1}−{t}_{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}_{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\left(\frac{\mathrm{1}+{t}_{\mathrm{1}} }{\mathrm{1}+{t}_{\mathrm{2}} }\right)^{\mathrm{2}} ×\frac{\mathrm{1}−{t}_{\mathrm{1}} }{\mathrm{1}−{t}_{\mathrm{2}} }=\left(\frac{\mathrm{1}+{t}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{1}+{t}_{\mathrm{2}} ^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$${t}_{\mathrm{1}} ={tan}\alpha\:\:\:{t}_{\mathrm{2}} ={tan}\beta \\ $$$${contd}.... \\ $$$$ \\ $$

Answered by ajfour last updated on 18/Sep/18

If a is to be found in terms  of b and c.  squaring first eq.   2a+2(√(a^2 −b^2 )) = c^2   squaring again  4a^2 −4b^2  = c^4 +4a^2 −4ac^2   ⇒   a = (c^2 /4)+(b^2 /c^2 )   similarly from second eq.           a = (b^2 /4)+(c^2 /b^2 )  ⇒  a = (c^2 /4)+(b^2 /c^2 ) = (b^2 /4)+(c^2 /b^2 )   ...(i)  ⇒   ((c^2 −b^2 )/4) = (((c^2 −b^2 )(c^2 +b^2 ))/(b^2 c^2 ))  Two cases arise:  If b^2 = c^2  , then       a = 1+(b^2 /4) = 1+(c^2 /4)  If b^2 ≠ c^2   ⇒   b^2 +c^2  = ((b^2 c^2 )/4)  , then using (i)     2a = ((b^2 +c^2 )/4) + ((b^4 +c^4 )/(b^2 c^2 ))  ⇒ 2a = ((b^2 +c^2 )/4) + (((b^2 +c^2 )^2 −2b^2 c^2 )/(b^2 c^2 ))        2a = ((b^2 c^2 )/(16))+((b^4 c^4 )/(16b^2 c^2 ))−2  ⇒    a = ((b^2 c^2 )/(16))−1 = ((b^2 +c^2 )/4)−1 .

$$\boldsymbol{{If}}\:\boldsymbol{{a}}\:\boldsymbol{{is}}\:\boldsymbol{{to}}\:\boldsymbol{{be}}\:\boldsymbol{{found}}\:\boldsymbol{{in}}\:\boldsymbol{{terms}} \\ $$$$\boldsymbol{{of}}\:\boldsymbol{{b}}\:\boldsymbol{{and}}\:\boldsymbol{{c}}. \\ $$$${squaring}\:{first}\:{eq}.\: \\ $$$$\mathrm{2}{a}+\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:=\:{c}^{\mathrm{2}} \\ $$$${squaring}\:{again} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{b}^{\mathrm{2}} \:=\:{c}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{ac}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{a}\:=\:\frac{{c}^{\mathrm{2}} }{\mathrm{4}}+\frac{{b}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\: \\ $$$${similarly}\:{from}\:{second}\:{eq}. \\ $$$$\:\:\:\:\:\:\:\:\:{a}\:=\:\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+\frac{{c}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:{a}\:=\:\frac{{c}^{\mathrm{2}} }{\mathrm{4}}+\frac{{b}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\:=\:\frac{{b}^{\mathrm{2}} }{\mathrm{4}}+\frac{{c}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\:\:...\left(\boldsymbol{{i}}\right) \\ $$$$\Rightarrow\:\:\:\frac{{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{4}}\:=\:\frac{\left({c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}{{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$$${Two}\:{cases}\:{arise}: \\ $$$${If}\:{b}^{\mathrm{2}} =\:{c}^{\mathrm{2}} \:,\:{then} \\ $$$$\:\:\:\:\:\boldsymbol{{a}}\:=\:\mathrm{1}+\frac{\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{4}}\:=\:\mathrm{1}+\frac{\boldsymbol{{c}}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${If}\:{b}^{\mathrm{2}} \neq\:{c}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \:=\:\frac{{b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{4}}\:\:,\:{then}\:{using}\:\left({i}\right) \\ $$$$\:\:\:\mathrm{2}\boldsymbol{{a}}\:=\:\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}}\:+\:\frac{{b}^{\mathrm{4}} +{c}^{\mathrm{4}} }{{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{2}{a}\:=\:\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}}\:+\:\frac{\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} {c}^{\mathrm{2}} }{{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\mathrm{2}{a}\:=\:\frac{{b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{16}}+\frac{{b}^{\mathrm{4}} {c}^{\mathrm{4}} }{\mathrm{16}{b}^{\mathrm{2}} {c}^{\mathrm{2}} }−\mathrm{2} \\ $$$$\Rightarrow\:\:\:\:{a}\:=\:\frac{{b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{16}}−\mathrm{1}\:=\:\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com