Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 44454 by ajfour last updated on 29/Sep/18

Commented by ajfour last updated on 29/Sep/18

A sphere in pure rolling motion  on a rough ground, encounters a stair,  collides completely inelastically  with its corner. Just after it  comes atop the stair, find its  velocity in terms of u, h, and R.

$${A}\:{sphere}\:{in}\:{pure}\:{rolling}\:{motion} \\ $$$${on}\:{a}\:{rough}\:{ground},\:{encounters}\:{a}\:{stair}, \\ $$$${collides}\:{completely}\:{inelastically} \\ $$$${with}\:{its}\:{corner}.\:{Just}\:{after}\:{it} \\ $$$${comes}\:{atop}\:{the}\:{stair},\:{find}\:{its} \\ $$$${velocity}\:{in}\:{terms}\:{of}\:\boldsymbol{{u}},\:\boldsymbol{{h}},\:{and}\:\boldsymbol{{R}}. \\ $$

Commented by ajfour last updated on 30/Sep/18

Commented by ajfour last updated on 30/Sep/18

Initial angular momentum  of sphere about corner P :   L_0  = ((2/5)MR^2 )(u/R)+Mu(R−h)  just after collision    L_1  = (7/5)MR^2 ((v_1 /R))  about P we can conserve amgular  momentum, so   L_1  = L_0   ⇒  ((7v_1 R)/5) = ((2uR)/5)+u(R−h) ...(i)    v_1  = ((2u)/7)+((5u)/7)−(5/7)((h/R))u  ⇒    v_1 = (1−((5h)/(7R)))u = λu  Now as it rises above,    (1/2)((7/5)MR^2 )((v_1 /R))^2  = Mgh                         + (1/2)((7/5)MR^2 )((v_2 /R))^2   using (i):  (1/2)((7/5))λ^2 u^2  = gh+ (1/2)((7/5))v_2 ^2   ⇒  v_2 ^2  = λ^2 u^2  − ((10)/7)gh      v_2 ^2  = (1−((5h)/(7R)))^2 u^2 −((10)/7)gh  ⇒    v_2  = (√((1−((5h)/(7R)))^2 u^2 −((10)/7)gh))  .

$${Initial}\:{angular}\:{momentum} \\ $$$${of}\:{sphere}\:{about}\:{corner}\:{P}\:: \\ $$$$\:{L}_{\mathrm{0}} \:=\:\left(\frac{\mathrm{2}}{\mathrm{5}}{MR}^{\mathrm{2}} \right)\frac{{u}}{{R}}+{Mu}\left({R}−{h}\right) \\ $$$${just}\:{after}\:{collision} \\ $$$$\:\:{L}_{\mathrm{1}} \:=\:\frac{\mathrm{7}}{\mathrm{5}}{MR}^{\mathrm{2}} \left(\frac{{v}_{\mathrm{1}} }{{R}}\right) \\ $$$${about}\:{P}\:{we}\:{can}\:{conserve}\:{amgular} \\ $$$${momentum},\:{so}\:\:\:{L}_{\mathrm{1}} \:=\:{L}_{\mathrm{0}} \\ $$$$\Rightarrow\:\:\frac{\mathrm{7}{v}_{\mathrm{1}} {R}}{\mathrm{5}}\:=\:\frac{\mathrm{2}{uR}}{\mathrm{5}}+{u}\left({R}−{h}\right)\:...\left({i}\right) \\ $$$$\:\:{v}_{\mathrm{1}} \:=\:\frac{\mathrm{2}{u}}{\mathrm{7}}+\frac{\mathrm{5}{u}}{\mathrm{7}}−\frac{\mathrm{5}}{\mathrm{7}}\left(\frac{{h}}{{R}}\right){u} \\ $$$$\Rightarrow\:\:\:\:{v}_{\mathrm{1}} =\:\left(\mathrm{1}−\frac{\mathrm{5}{h}}{\mathrm{7}{R}}\right){u}\:=\:\lambda{u} \\ $$$${Now}\:{as}\:{it}\:{rises}\:{above}, \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{5}}{MR}^{\mathrm{2}} \right)\left(\frac{{v}_{\mathrm{1}} }{{R}}\right)^{\mathrm{2}} \:=\:{Mgh} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{5}}{MR}^{\mathrm{2}} \right)\left(\frac{{v}_{\mathrm{2}} }{{R}}\right)^{\mathrm{2}} \\ $$$${using}\:\left({i}\right): \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{5}}\right)\lambda^{\mathrm{2}} {u}^{\mathrm{2}} \:=\:{gh}+\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{5}}\right){v}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{v}_{\mathrm{2}} ^{\mathrm{2}} \:=\:\lambda^{\mathrm{2}} {u}^{\mathrm{2}} \:−\:\frac{\mathrm{10}}{\mathrm{7}}{gh} \\ $$$$\:\:\:\:{v}_{\mathrm{2}} ^{\mathrm{2}} \:=\:\left(\mathrm{1}−\frac{\mathrm{5}{h}}{\mathrm{7}{R}}\right)^{\mathrm{2}} {u}^{\mathrm{2}} −\frac{\mathrm{10}}{\mathrm{7}}{gh} \\ $$$$\Rightarrow\:\:\:\:\boldsymbol{{v}}_{\mathrm{2}} \:=\:\sqrt{\left(\mathrm{1}−\frac{\mathrm{5}\boldsymbol{{h}}}{\mathrm{7}\boldsymbol{{R}}}\right)^{\mathrm{2}} \boldsymbol{{u}}^{\mathrm{2}} −\frac{\mathrm{10}}{\mathrm{7}}\boldsymbol{{gh}}}\:\:. \\ $$

Commented by MrW3 last updated on 30/Sep/18

correct and very nice sir!

$${correct}\:{and}\:{very}\:{nice}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com