Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 45477 by ajfour last updated on 13/Oct/18

Commented by ajfour last updated on 13/Oct/18

If radius of circle is unity,  find equation of ellipse.  (circle may or may not touch y-axes)

$${If}\:{radius}\:{of}\:{circle}\:{is}\:{unity}, \\ $$$${find}\:{equation}\:{of}\:{ellipse}. \\ $$$$\left({circle}\:{may}\:{or}\:{may}\:{not}\:{touch}\:{y}-{axes}\right) \\ $$

Commented by ajfour last updated on 13/Oct/18

Commented by MJS last updated on 13/Oct/18

it seems not unique to me at first sight but  let′s try...

$$\mathrm{it}\:\mathrm{seems}\:\mathrm{not}\:\mathrm{unique}\:\mathrm{to}\:\mathrm{me}\:\mathrm{at}\:\mathrm{first}\:\mathrm{sight}\:\mathrm{but} \\ $$$$\mathrm{let}'\mathrm{s}\:\mathrm{try}... \\ $$

Commented by ajfour last updated on 14/Oct/18

let eq. of ellipse be   ax^2 +by^2 +2hxy+2gx+2fy+c=0  since it has a double root with  y=0 ⇒ the equation      ax^2 +2gx+c= 0  has D=0  ⇒     g^2  = ac      ....(i)  double root with x=0  ⇒       by^2 +2fy+c = 0  has D=0  ⇒      f^( 2)  = bc       ...(ii)  Let slope of PQ= tan θ = m      { ((x_Q = 2cos^2 θ )),((y_Q = 2cos θsin θ)) :}      .....(iii)  if  (p,q) be center of ellipse  ⇒  q = pm  ⇒   ((af−gh)/(h^2 −ab)) = m(((bg−hf)/(h^2 −ab)))    ...(iv)   OQ=r = (√(p^2 +q^2 ))−2cos θ       { ((x_Q = p−rcos θ)),((y_Q = q−rsin θ)) :}      ......(v)    differentiating eq. of ellipse  2ax+2by(dy/dx)+2hx(dy/dx)+2hy+2g+      2f (dy/dx) = 0    (dy/dx)∣_Q  = −(1/m)               ....(vi)  And Q(x_Q  ,y_Q ) lies on ellipse   so (x_Q , y_Q ) satisfies   ax^2 +by^2 +2hxy+2gx+2fy+c=0                                               ....(vii)    ________________________

$${let}\:{eq}.\:{of}\:{ellipse}\:{be}\: \\ $$$${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +\mathrm{2}{hxy}+\mathrm{2}{gx}+\mathrm{2}{fy}+{c}=\mathrm{0} \\ $$$${since}\:{it}\:{has}\:{a}\:{double}\:{root}\:{with} \\ $$$${y}=\mathrm{0}\:\Rightarrow\:{the}\:{equation} \\ $$$$\:\:\:\:{ax}^{\mathrm{2}} +\mathrm{2}{gx}+{c}=\:\mathrm{0}\:\:{has}\:{D}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\:\boldsymbol{{g}}^{\mathrm{2}} \:=\:\boldsymbol{{ac}}\:\:\:\:\:\:....\left(\boldsymbol{{i}}\right) \\ $$$${double}\:{root}\:{with}\:{x}=\mathrm{0}\:\:\Rightarrow \\ $$$$\:\:\:\:\:{by}^{\mathrm{2}} +\mathrm{2}{fy}+{c}\:=\:\mathrm{0}\:\:{has}\:{D}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\:\:\boldsymbol{{f}}^{\:\mathrm{2}} \:=\:\boldsymbol{{bc}}\:\:\:\:\:\:\:...\left(\boldsymbol{{ii}}\right) \\ $$$${Let}\:{slope}\:{of}\:{PQ}=\:\mathrm{tan}\:\theta\:=\:{m} \\ $$$$\:\:\:\begin{cases}{{x}_{{Q}} =\:\mathrm{2cos}\:^{\mathrm{2}} \theta\:}\\{{y}_{{Q}} =\:\mathrm{2cos}\:\theta\mathrm{sin}\:\theta}\end{cases}\:\:\:\:\:\:.....\left({iii}\right) \\ $$$${if}\:\:\left({p},{q}\right)\:{be}\:{center}\:{of}\:{ellipse} \\ $$$$\Rightarrow\:\:{q}\:=\:{pm} \\ $$$$\Rightarrow\:\:\:\frac{{af}−{gh}}{{h}^{\mathrm{2}} −{ab}}\:=\:{m}\left(\frac{{bg}−{hf}}{{h}^{\mathrm{2}} −{ab}}\right)\:\:\:\:...\left({iv}\right) \\ $$$$\:{OQ}={r}\:=\:\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }−\mathrm{2cos}\:\theta \\ $$$$\:\:\:\:\begin{cases}{{x}_{{Q}} =\:{p}−{r}\mathrm{cos}\:\theta}\\{{y}_{{Q}} =\:{q}−{r}\mathrm{sin}\:\theta}\end{cases}\:\:\:\:\:\:......\left({v}\right) \\ $$$$\:\:{differentiating}\:{eq}.\:{of}\:{ellipse} \\ $$$$\mathrm{2}{ax}+\mathrm{2}{by}\frac{{dy}}{{dx}}+\mathrm{2}{hx}\frac{{dy}}{{dx}}+\mathrm{2}{hy}+\mathrm{2}{g}+ \\ $$$$\:\:\:\:\mathrm{2}{f}\:\frac{{dy}}{{dx}}\:=\:\mathrm{0} \\ $$$$\:\:\frac{{dy}}{{dx}}\mid_{{Q}} \:=\:−\frac{\mathrm{1}}{{m}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({vi}\right) \\ $$$${And}\:{Q}\left({x}_{{Q}} \:,{y}_{{Q}} \right)\:{lies}\:{on}\:{ellipse}\: \\ $$$${so}\:\left({x}_{{Q}} ,\:{y}_{{Q}} \right)\:{satisfies}\: \\ $$$${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +\mathrm{2}{hxy}+\mathrm{2}{gx}+\mathrm{2}{fy}+{c}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({vii}\right) \\ $$$$\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com