Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45885 by Meritguide1234 last updated on 17/Oct/18

Commented by maxmathsup by imad last updated on 18/Oct/18

let A_n =∫_0 ^(π/2)  n(1−(sinx)^(1/n) )dx =∫_0 ^(π/2)   f_n (x)dx with f_n (x)=n(1−(sinx^(1/n) ))  but we have  (sinx)^(1/n)  =e^((1/n)ln(sinx)) =1+((ln(sinx))/n) +o((1/n)) ⇒  1−e^((1/n)ln(sinx)) =−((ln(sinx))/n) +o((1/n)) ⇒n(1−e^((ln(sinx))/n) )=−ln(sinx) +o(1) ⇒  f_n (x)=−ln(sinx)+o(1) ⇒lim_(n→+∞)  A_n = ∫_0 ^(π/2) −ln(sinx)dx  =−(−(π/2)ln(2))=(π/2)ln(2).

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{n}\left(\mathrm{1}−\left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \right){dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{f}_{{n}} \left({x}\right){dx}\:{with}\:{f}_{{n}} \left({x}\right)={n}\left(\mathrm{1}−\left({sinx}^{\frac{\mathrm{1}}{{n}}} \right)\right) \\ $$$${but}\:{we}\:{have}\:\:\left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \:={e}^{\frac{\mathrm{1}}{{n}}{ln}\left({sinx}\right)} =\mathrm{1}+\frac{{ln}\left({sinx}\right)}{{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow \\ $$$$\mathrm{1}−{e}^{\frac{\mathrm{1}}{{n}}{ln}\left({sinx}\right)} =−\frac{{ln}\left({sinx}\right)}{{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{n}\left(\mathrm{1}−{e}^{\frac{{ln}\left({sinx}\right)}{{n}}} \right)=−{ln}\left({sinx}\right)\:+{o}\left(\mathrm{1}\right)\:\Rightarrow \\ $$$${f}_{{n}} \left({x}\right)=−{ln}\left({sinx}\right)+{o}\left(\mathrm{1}\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −{ln}\left({sinx}\right){dx} \\ $$$$=−\left(−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\right)=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right). \\ $$

Commented by Meritguide1234 last updated on 19/Oct/18

nice approach

$${nice}\:{approach} \\ $$

Commented by maxmathsup by imad last updated on 20/Oct/18

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Oct/18

lim_(n→∞)  n∫_0 ^(π/2) {1−(sinx)^(1/n) }dx  lim_(n→∞)  n[∣x∣_0 ^(π/2) −∫_0 ^(π/2) sin^(2p−1) xcoz^(2q−1) x dx]  here 2p−1=(1/n)     2p=1+(1/n)    p=((n+1)/(2n))    2q−1=0    q=(1/2)    using gamma beta function  formula ∫_0 ^(π/2) sin^(2p−1) xcos^(2a−1) xdx=((⌈(p)⌈(q))/(2⌈(p+q)))    lim_(n→∞)  n[(π/2)−((⌈(p)⌈(q))/(2⌈(p+q)))]  lim_(n→∞)  n[(π/2)−((⌈(((n+1)/(2n)))⌈((1/2)))/(2⌈(((n+1)/(2n))+(1/2))))]  lim_(n→∞)  n[(π/2)−((⌈(1+((1−n)/(2n)))×(√π))/(2⌈(1+((n+1)/(2n))−(1/2))))   ]  lim_(n→∞) n[(π/2)−(((√π) ×⌈(1+((1−n)/(2n))))/(2⌈(1+(1/(2n)))))]

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left\{\mathrm{1}−\left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \right\}{dx} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\left[\mid{x}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} {xcoz}^{\mathrm{2}{q}−\mathrm{1}} {x}\:{dx}\right] \\ $$$${here}\:\mathrm{2}{p}−\mathrm{1}=\frac{\mathrm{1}}{{n}}\:\:\:\:\:\mathrm{2}{p}=\mathrm{1}+\frac{\mathrm{1}}{{n}}\:\:\:\:{p}=\frac{{n}+\mathrm{1}}{\mathrm{2}{n}} \\ $$$$\:\:\mathrm{2}{q}−\mathrm{1}=\mathrm{0}\:\:\:\:{q}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:{using}\:{gamma}\:{beta}\:{function} \\ $$$${formula}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} {xcos}^{\mathrm{2}{a}−\mathrm{1}} {xdx}=\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\mathrm{2}\lceil\left({p}+{q}\right)} \\ $$$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\left[\frac{\pi}{\mathrm{2}}−\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\mathrm{2}\lceil\left({p}+{q}\right)}\right] \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\left[\frac{\pi}{\mathrm{2}}−\frac{\lceil\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\right)\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\lceil\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}\right] \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\left[\frac{\pi}{\mathrm{2}}−\frac{\lceil\left(\mathrm{1}+\frac{\mathrm{1}−{n}}{\mathrm{2}{n}}\right)×\sqrt{\pi}}{\mathrm{2}\lceil\left(\mathrm{1}+\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}}\right)}\:\:\:\right] \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\left[\frac{\pi}{\mathrm{2}}−\frac{\sqrt{\pi}\:×\lceil\left(\mathrm{1}+\frac{\mathrm{1}−{n}}{\mathrm{2}{n}}\right)}{\mathrm{2}\lceil\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)}\right] \\ $$

Commented by Meritguide1234 last updated on 18/Oct/18

not correct

$${not}\:{correct} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Oct/18

yes i know the result is yet to come ...when n→∞  the results is ∞

$${yes}\:{i}\:{know}\:{the}\:{result}\:{is}\:{yet}\:{to}\:{come}\:...{when}\:{n}\rightarrow\infty \\ $$$${the}\:{results}\:{is}\:\infty \\ $$

Commented by Meritguide1234 last updated on 18/Oct/18

put n=1/t...then ans is ((π/2)ln2)

$${put}\:{n}=\mathrm{1}/{t}...{then}\:{ans}\:{is}\:\left(\frac{\pi}{\mathrm{2}}{ln}\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com