Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 46003 by MrW3 last updated on 19/Oct/18

Commented by MrW3 last updated on 20/Oct/18

Find the angle θ when the rope starts  to slide. (μ=coefficient of friction)

$${Find}\:{the}\:{angle}\:\theta\:{when}\:{the}\:{rope}\:{starts} \\ $$$${to}\:{slide}.\:\left(\mu={coefficient}\:{of}\:{friction}\right) \\ $$

Answered by MrW3 last updated on 20/Oct/18

Commented by MrW3 last updated on 20/Oct/18

T=tension force in rope  ρ=mass of rope of unit length  μ=coefficient of friction    length of free hanging rope AB is  Rθ, hence tension in rope at point B  is T_B =ρgRθ.    dG=ρgRdϕ  dN=dG cos ϕ+T dϕ=(ρgR cos ϕ+T)dϕ  df=μdN=μ(ρgR cos ϕ+T)dϕ    T+dG sin ϕ=T+dT+df  ρgR sin ϕ dϕ=dT+μ(ρgR cos ϕ+T)dϕ  ⇒(dT/dϕ)+μT=ρgR(sin ϕ−μ cos ϕ)  ⇒T=((ρgR[2μ cos ϕ+(1−μ^2 )sin ϕ])/(1+μ^2 ))+Ce^(−μϕ)   (see Q      for more details)    at point B: ϕ=0 and T=T_B =ρgRθ  ⇒((ρgR2μ)/(1+μ^2 ))+C=ρgRθ  ⇒C=ρgR(θ−((2μ)/(1+μ^2 )))=((ρgR)/(1+μ^2 ))[(1+μ^2 )θ−2μ]  ⇒T=((ρgR)/(1+μ^2 )){2μ cos ϕ+(1−μ^2 )sin ϕ+[(1+μ^2 )θ−2μ]e^(−μϕ) }    at point C: ϕ=π−θ,  the rope starts to slide if T_C =0, i.e.  ⇒(1−μ^2 )sin θ−2μcos θ+[(1+μ^2 )θ−2μ]e^(−μ(π−θ)) =0  this equation can be solved only  numerically for θ. for example if  μ=0.4, we get θ=42.7°.    the relationship θ(μ) can be  displayed in a diagram like this:

$${T}={tension}\:{force}\:{in}\:{rope} \\ $$$$\rho={mass}\:{of}\:{rope}\:{of}\:{unit}\:{length} \\ $$$$\mu={coefficient}\:{of}\:{friction} \\ $$$$ \\ $$$${length}\:{of}\:{free}\:{hanging}\:{rope}\:{AB}\:{is} \\ $$$${R}\theta,\:{hence}\:{tension}\:{in}\:{rope}\:{at}\:{point}\:{B} \\ $$$${is}\:{T}_{{B}} =\rho{gR}\theta. \\ $$$$ \\ $$$${dG}=\rho{gRd}\varphi \\ $$$${dN}={dG}\:\mathrm{cos}\:\varphi+{T}\:{d}\varphi=\left(\rho{gR}\:\mathrm{cos}\:\varphi+{T}\right){d}\varphi \\ $$$${df}=\mu{dN}=\mu\left(\rho{gR}\:\mathrm{cos}\:\varphi+{T}\right){d}\varphi \\ $$$$ \\ $$$${T}+{dG}\:\mathrm{sin}\:\varphi={T}+{dT}+{df} \\ $$$$\rho{gR}\:\mathrm{sin}\:\varphi\:{d}\varphi={dT}+\mu\left(\rho{gR}\:\mathrm{cos}\:\varphi+{T}\right){d}\varphi \\ $$$$\Rightarrow\frac{{dT}}{{d}\varphi}+\mu{T}=\rho{gR}\left(\mathrm{sin}\:\varphi−\mu\:\mathrm{cos}\:\varphi\right) \\ $$$$\Rightarrow{T}=\frac{\rho{gR}\left[\mathrm{2}\mu\:\mathrm{cos}\:\varphi+\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{sin}\:\varphi\right]}{\mathrm{1}+\mu^{\mathrm{2}} }+{Ce}^{−\mu\varphi} \\ $$$$\left({see}\:{Q} \:{for}\:{more}\:{details}\right) \\ $$$$ \\ $$$${at}\:{point}\:{B}:\:\varphi=\mathrm{0}\:{and}\:{T}={T}_{{B}} =\rho{gR}\theta \\ $$$$\Rightarrow\frac{\rho{gR}\mathrm{2}\mu}{\mathrm{1}+\mu^{\mathrm{2}} }+{C}=\rho{gR}\theta \\ $$$$\Rightarrow{C}=\rho{gR}\left(\theta−\frac{\mathrm{2}\mu}{\mathrm{1}+\mu^{\mathrm{2}} }\right)=\frac{\rho{gR}}{\mathrm{1}+\mu^{\mathrm{2}} }\left[\left(\mathrm{1}+\mu^{\mathrm{2}} \right)\theta−\mathrm{2}\mu\right] \\ $$$$\Rightarrow{T}=\frac{\rho{gR}}{\mathrm{1}+\mu^{\mathrm{2}} }\left\{\mathrm{2}\mu\:\mathrm{cos}\:\varphi+\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{sin}\:\varphi+\left[\left(\mathrm{1}+\mu^{\mathrm{2}} \right)\theta−\mathrm{2}\mu\right]{e}^{−\mu\varphi} \right\} \\ $$$$ \\ $$$${at}\:{point}\:{C}:\:\varphi=\pi−\theta, \\ $$$${the}\:{rope}\:{starts}\:{to}\:{slide}\:{if}\:{T}_{{C}} =\mathrm{0},\:{i}.{e}. \\ $$$$\Rightarrow\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{sin}\:\theta−\mathrm{2}\mu\mathrm{cos}\:\theta+\left[\left(\mathrm{1}+\mu^{\mathrm{2}} \right)\theta−\mathrm{2}\mu\right]{e}^{−\mu\left(\pi−\theta\right)} =\mathrm{0} \\ $$$${this}\:{equation}\:{can}\:{be}\:{solved}\:{only} \\ $$$${numerically}\:{for}\:\theta.\:{for}\:{example}\:{if} \\ $$$$\mu=\mathrm{0}.\mathrm{4},\:{we}\:{get}\:\theta=\mathrm{42}.\mathrm{7}°. \\ $$$$ \\ $$$${the}\:{relationship}\:\theta\left(\mu\right)\:{can}\:{be} \\ $$$${displayed}\:{in}\:{a}\:{diagram}\:{like}\:{this}: \\ $$

Commented by MrW3 last updated on 20/Oct/18

Commented by ajfour last updated on 20/Oct/18

Excellent Sir.

$${Excellent}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com