Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 46085 by peter frank last updated on 20/Oct/18

Commented by maxmathsup by imad last updated on 21/Oct/18

let S =Σ_(n=1) ^∞  cos^n θ cos(nθ) =Re( Σ_(n=1) ^∞  e^(inθ)  cos^n θ)  but   Σ_(n=1) ^∞  e^(inθ)  cos^n θ =Σ_(n=1) ^∞  e^(inθ) (((e^(iθ)  +e^(−iθ) )/2))^n   =Σ_(n=1) ^∞   (e^(inθ) /2^n ) (Σ_(k=0) ^n   C_n ^k   e^(ikθ)  e^(−i(n−k)θ) )  =Σ_(n=1) ^∞    (1/2^n )(Σ_(k=0) ^n   C_n ^k   e^(2ikθ) )  =Σ_(n=1) ^∞  (1/2^n )Σ_(k=0) ^n   C_n ^k   (e^(2iθ) )^k   =Σ_(n=1) ^∞  (1/2^n )(1+e^(2iθ) )^n  =Σ_(n=1) ^∞  (((1+e^(2iθ) )/2))^n   =(1/(1−((1+e^(2iθ) )/2))) −1  =(2/(1−e^(2iθ) )) −1 = ((2−1 +e^(2iθ) )/(1−e^(2iθ) )) = ((1+e^(2iθ) )/(1−e^(2iθ) )) =((1+cos(2θ)+i sin(2θ))/(1−cos(2θ)−isin(2θ)))  =((2cos^2 (θ) +2i sinθ cosθ)/(2sin^2 θ−2isinθ cosθ)) =((cosθ e^(iθ) )/(−isinθ e^(iθ) )) = i cotanθ   ⇒ S =0

$${let}\:{S}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{cos}^{{n}} \theta\:{cos}\left({n}\theta\right)\:={Re}\left(\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{{in}\theta} \:{cos}^{{n}} \theta\right)\:\:{but}\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{{in}\theta} \:{cos}^{{n}} \theta\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{{in}\theta} \left(\frac{{e}^{{i}\theta} \:+{e}^{−{i}\theta} }{\mathrm{2}}\right)^{{n}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{{in}\theta} }{\mathrm{2}^{{n}} }\:\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:{e}^{{ik}\theta} \:{e}^{−{i}\left({n}−{k}\right)\theta} \right) \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:{e}^{\mathrm{2}{ik}\theta} \right)\:\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:\left({e}^{\mathrm{2}{i}\theta} \right)^{{k}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\mathrm{1}+{e}^{\mathrm{2}{i}\theta} \right)^{{n}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}+{e}^{\mathrm{2}{i}\theta} }{\mathrm{2}}\right)^{{n}} \:\:=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}+{e}^{\mathrm{2}{i}\theta} }{\mathrm{2}}}\:−\mathrm{1} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}−{e}^{\mathrm{2}{i}\theta} }\:−\mathrm{1}\:=\:\frac{\mathrm{2}−\mathrm{1}\:+{e}^{\mathrm{2}{i}\theta} }{\mathrm{1}−{e}^{\mathrm{2}{i}\theta} }\:=\:\frac{\mathrm{1}+{e}^{\mathrm{2}{i}\theta} }{\mathrm{1}−{e}^{\mathrm{2}{i}\theta} }\:=\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)+{i}\:{sin}\left(\mathrm{2}\theta\right)}{\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)−{isin}\left(\mathrm{2}\theta\right)} \\ $$$$=\frac{\mathrm{2}{cos}^{\mathrm{2}} \left(\theta\right)\:+\mathrm{2}{i}\:{sin}\theta\:{cos}\theta}{\mathrm{2}{sin}^{\mathrm{2}} \theta−\mathrm{2}{isin}\theta\:{cos}\theta}\:=\frac{{cos}\theta\:{e}^{{i}\theta} }{−{isin}\theta\:{e}^{{i}\theta} }\:=\:{i}\:{cotan}\theta\:\:\:\Rightarrow\:{S}\:=\mathrm{0} \\ $$$$ \\ $$

Commented by peter frank last updated on 21/Oct/18

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18

p=cosθcosθ+cos^2 θcos2θ+cos^3 θcos3θ+...  q=cosθsinθ+cos^2 θsin2θ+cos^3 θsin3θ+...  now e^(iα) =cosα+isinα  p+iq=cosθe^(iθ) +cos^2 θe^(i2θ) +cos^3 θe^(i3θ) +...  p+iq=t+t^2 +t^3 +...∞  here i am editing...  sum of terms upto infinity  S_∞ =(t/(1−t))=((cosθe^(iθ) )/(1−cosθe^(iθ) ))  =((cosθ(cosθ+isinθ))/(1−cosθ(cosθ+isinθ)))                 =((cosθ(cosθ+isnθ))/(1−cosθ(cosθ+isinθ)))  =((cos^2 θ+isinθcosθ)/(1−cos^2 θ−isinθcosθ))  =((cosθ)/(sinθ))×((cosθ+isinθ)/(sinθ−icosθ))  =cotθ×(((cosθ+isinθ)(sinθ+icosθ))/((sinθ−icosθ)(sinθ+icosθ)))  =cotθ×((cosθsinθ+icos^2 θ+isin^2 θ−sinθcosθ)/(sin^2 θ+cos^2 θ))  =cotθ×i  so p+iq=0+icotθ  so p=0  q=cotθ    so required answer for the given series is zero

$${p}={cos}\theta{cos}\theta+{cos}^{\mathrm{2}} \theta{cos}\mathrm{2}\theta+{cos}^{\mathrm{3}} \theta{cos}\mathrm{3}\theta+... \\ $$$${q}={cos}\theta{sin}\theta+{cos}^{\mathrm{2}} \theta{sin}\mathrm{2}\theta+{cos}^{\mathrm{3}} \theta{sin}\mathrm{3}\theta+... \\ $$$${now}\:{e}^{{i}\alpha} ={cos}\alpha+{isin}\alpha \\ $$$${p}+{iq}={cos}\theta{e}^{{i}\theta} +{cos}^{\mathrm{2}} \theta{e}^{{i}\mathrm{2}\theta} +{cos}^{\mathrm{3}} \theta{e}^{{i}\mathrm{3}\theta} +... \\ $$$${p}+{iq}={t}+{t}^{\mathrm{2}} +{t}^{\mathrm{3}} +...\infty \\ $$$${here}\:{i}\:{am}\:{editing}... \\ $$$${sum}\:{of}\:{terms}\:{upto}\:{infinity} \\ $$$${S}_{\infty} =\frac{{t}}{\mathrm{1}−{t}}=\frac{{cos}\theta{e}^{{i}\theta} }{\mathrm{1}−{cos}\theta{e}^{{i}\theta} } \\ $$$$=\frac{{cos}\theta\left({cos}\theta+{isin}\theta\right)}{\mathrm{1}−{cos}\theta\left({cos}\theta+{isin}\theta\right)} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$=\frac{{cos}\theta\left({cos}\theta+{isn}\theta\right)}{\mathrm{1}−{cos}\theta\left({cos}\theta+{isin}\theta\right)} \\ $$$$=\frac{{cos}^{\mathrm{2}} \theta+{isin}\theta{cos}\theta}{\mathrm{1}−{cos}^{\mathrm{2}} \theta−{isin}\theta{cos}\theta} \\ $$$$=\frac{{cos}\theta}{{sin}\theta}×\frac{{cos}\theta+{isin}\theta}{{sin}\theta−{icos}\theta} \\ $$$$={cot}\theta×\frac{\left({cos}\theta+{isin}\theta\right)\left({sin}\theta+{icos}\theta\right)}{\left({sin}\theta−{icos}\theta\right)\left({sin}\theta+{icos}\theta\right)} \\ $$$$={cot}\theta×\frac{{cos}\theta{sin}\theta+{icos}^{\mathrm{2}} \theta+{isin}^{\mathrm{2}} \theta−{sin}\theta{cos}\theta}{{sin}^{\mathrm{2}} \theta+{cos}^{\mathrm{2}} \theta} \\ $$$$={cot}\theta×{i} \\ $$$${so}\:{p}+{iq}=\mathrm{0}+{icot}\theta \\ $$$${so}\:{p}=\mathrm{0} \\ $$$${q}={cot}\theta \\ $$$$ \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{required}}\:\boldsymbol{{answer}}\:\boldsymbol{{for}}\:\boldsymbol{{the}}\:\boldsymbol{{given}}\:\boldsymbol{{series}}\:\boldsymbol{{is}}\:\boldsymbol{{zero}} \\ $$$$ \\ $$

Commented by peter frank last updated on 21/Oct/18

okay sir

$$\mathrm{okay}\:\mathrm{sir} \\ $$

Commented by peter frank last updated on 21/Oct/18

sorry sir first line with red colour.

$$\mathrm{sorry}\:\mathrm{sir}\:\mathrm{first}\:\mathrm{line}\:\mathrm{with}\:\mathrm{red}\:\mathrm{colour}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18

pls check...i have corrected

$${pls}\:{check}...{i}\:{have}\:{corrected} \\ $$

Commented by peter frank last updated on 21/Oct/18

thank you sir.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com