Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 46095 by Meritguide1234 last updated on 21/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Oct/18

The eqn of stline is  ((x−2)/1)=((y−1)/2)=((z−2)/3)=k  eqn plane x+y+z=8  (2,1,2) is a point on stline  (k+2,2k+1,3k+2) is the point where st line  intersect plane.  so k+2+2k+1+3k+2=8  6k+5=8   k=(1/2)  ((5/2),2,(7/2)) is the point where st line intersect plane  now we are going to find image of(2,1,2) wrt plane  eqn st line passing through (2,1,2) and parallel  to the normal on the plane is  ((x−2)/1)=((y−1)/1)=((z−2)/1)=α  (α+2,α+1,α+2) lies on plane  α+2+α+1+α+2=8  3α=3   α=1  (3,2,3)  (2,1,2)   (3,2,3)   (a,b,c)  here[(3,2,3) is foot of perpendicular and  (a,b,c)  is image of (2,1,2)  (3,2,3) is mid point of (2,1,2) and (a,b,c)  so ((2+a)/2)=3      ((1+b)/2)=2    ((2+c)/2)=3  a=4       b=3     c=4  SO The eqn of image of st line is the st line  passing through ((5/2),2,(7/2)) and(4,3,4)  ((x−(5/2))/(4−(5/2)))=((y−2)/(3−2))=((z−(7/2))/(4−(7/2)))  ((x−2.5)/(1.5))=((y−2)/1)=((z−3.5)/(0.5))  or ((x−4)/(1.5))=((y−3)/1)=((z−4)/(0.5)) ←image line  PROJECTION line passing through  ((5/2),(2/1),(7/2)) and foot of perpendicular(3,2,3)  ((x−3)/(3−2.5))=((y−2)/(2−2))=((z−3)/(3−3.5))  ((x−3)/(0.5))=((y−2)/0)=((z−3)/(−0.5)) ← pls check...

$${The}\:{eqn}\:{of}\:{stline}\:{is} \\ $$$$\frac{{x}−\mathrm{2}}{\mathrm{1}}=\frac{{y}−\mathrm{1}}{\mathrm{2}}=\frac{{z}−\mathrm{2}}{\mathrm{3}}={k} \\ $$$${eqn}\:{plane}\:{x}+{y}+{z}=\mathrm{8} \\ $$$$\left(\mathrm{2},\mathrm{1},\mathrm{2}\right)\:{is}\:{a}\:{point}\:{on}\:{stline} \\ $$$$\left({k}+\mathrm{2},\mathrm{2}{k}+\mathrm{1},\mathrm{3}{k}+\mathrm{2}\right)\:{is}\:{the}\:{point}\:{where}\:{st}\:{line} \\ $$$${intersect}\:{plane}. \\ $$$${so}\:{k}+\mathrm{2}+\mathrm{2}{k}+\mathrm{1}+\mathrm{3}{k}+\mathrm{2}=\mathrm{8} \\ $$$$\mathrm{6}{k}+\mathrm{5}=\mathrm{8}\:\:\:{k}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{2}},\mathrm{2},\frac{\mathrm{7}}{\mathrm{2}}\right)\:{is}\:{the}\:{point}\:{where}\:{st}\:{line}\:{intersect}\:{plane} \\ $$$${now}\:{we}\:{are}\:{going}\:{to}\:{find}\:{image}\:{of}\left(\mathrm{2},\mathrm{1},\mathrm{2}\right)\:{wrt}\:{plane} \\ $$$${eqn}\:{st}\:{line}\:{passing}\:{through}\:\left(\mathrm{2},\mathrm{1},\mathrm{2}\right)\:{and}\:{parallel} \\ $$$${to}\:{the}\:{normal}\:{on}\:{the}\:{plane}\:{is} \\ $$$$\frac{{x}−\mathrm{2}}{\mathrm{1}}=\frac{{y}−\mathrm{1}}{\mathrm{1}}=\frac{{z}−\mathrm{2}}{\mathrm{1}}=\alpha \\ $$$$\left(\alpha+\mathrm{2},\alpha+\mathrm{1},\alpha+\mathrm{2}\right)\:{lies}\:{on}\:{plane} \\ $$$$\alpha+\mathrm{2}+\alpha+\mathrm{1}+\alpha+\mathrm{2}=\mathrm{8}\:\:\mathrm{3}\alpha=\mathrm{3}\:\:\:\alpha=\mathrm{1} \\ $$$$\left(\mathrm{3},\mathrm{2},\mathrm{3}\right) \\ $$$$\left(\mathrm{2},\mathrm{1},\mathrm{2}\right)\:\:\:\left(\mathrm{3},\mathrm{2},\mathrm{3}\right)\:\:\:\left({a},{b},{c}\right) \\ $$$${here}\left[\left(\mathrm{3},\mathrm{2},\mathrm{3}\right)\:{is}\:{foot}\:{of}\:{perpendicular}\:{and}\right. \\ $$$$\left({a},{b},{c}\right)\:\:{is}\:{image}\:{of}\:\left(\mathrm{2},\mathrm{1},\mathrm{2}\right) \\ $$$$\left(\mathrm{3},\mathrm{2},\mathrm{3}\right)\:{is}\:{mid}\:{point}\:{of}\:\left(\mathrm{2},\mathrm{1},\mathrm{2}\right)\:{and}\:\left({a},{b},{c}\right) \\ $$$${so}\:\frac{\mathrm{2}+{a}}{\mathrm{2}}=\mathrm{3}\:\:\:\:\:\:\frac{\mathrm{1}+{b}}{\mathrm{2}}=\mathrm{2}\:\:\:\:\frac{\mathrm{2}+{c}}{\mathrm{2}}=\mathrm{3} \\ $$$${a}=\mathrm{4}\:\:\:\:\:\:\:{b}=\mathrm{3}\:\:\:\:\:{c}=\mathrm{4} \\ $$$$\boldsymbol{{S}}{O}\:{The}\:{eqn}\:{of}\:{image}\:{of}\:{st}\:{line}\:{is}\:{the}\:{st}\:{line} \\ $$$${passing}\:{through}\:\left(\frac{\mathrm{5}}{\mathrm{2}},\mathrm{2},\frac{\mathrm{7}}{\mathrm{2}}\right)\:{and}\left(\mathrm{4},\mathrm{3},\mathrm{4}\right) \\ $$$$\frac{{x}−\frac{\mathrm{5}}{\mathrm{2}}}{\mathrm{4}−\frac{\mathrm{5}}{\mathrm{2}}}=\frac{{y}−\mathrm{2}}{\mathrm{3}−\mathrm{2}}=\frac{{z}−\frac{\mathrm{7}}{\mathrm{2}}}{\mathrm{4}−\frac{\mathrm{7}}{\mathrm{2}}} \\ $$$$\frac{{x}−\mathrm{2}.\mathrm{5}}{\mathrm{1}.\mathrm{5}}=\frac{{y}−\mathrm{2}}{\mathrm{1}}=\frac{{z}−\mathrm{3}.\mathrm{5}}{\mathrm{0}.\mathrm{5}} \\ $$$${or}\:\frac{{x}−\mathrm{4}}{\mathrm{1}.\mathrm{5}}=\frac{{y}−\mathrm{3}}{\mathrm{1}}=\frac{{z}−\mathrm{4}}{\mathrm{0}.\mathrm{5}}\:\leftarrow{image}\:{line} \\ $$$$\boldsymbol{{P}}{ROJECTION}\:{line}\:{passing}\:{through} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{2}},\frac{\mathrm{2}}{\mathrm{1}},\frac{\mathrm{7}}{\mathrm{2}}\right)\:{and}\:{foot}\:{of}\:{perpendicular}\left(\mathrm{3},\mathrm{2},\mathrm{3}\right) \\ $$$$\frac{{x}−\mathrm{3}}{\mathrm{3}−\mathrm{2}.\mathrm{5}}=\frac{{y}−\mathrm{2}}{\mathrm{2}−\mathrm{2}}=\frac{{z}−\mathrm{3}}{\mathrm{3}−\mathrm{3}.\mathrm{5}} \\ $$$$\frac{{x}−\mathrm{3}}{\mathrm{0}.\mathrm{5}}=\frac{{y}−\mathrm{2}}{\mathrm{0}}=\frac{{z}−\mathrm{3}}{−\mathrm{0}.\mathrm{5}}\:\leftarrow\:{pls}\:{check}... \\ $$$$ \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Oct/18

thank you sir for moral boost...

$${thank}\:{you}\:{sir}\:{for}\:{moral}\:{boost}... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Oct/18

$$ \\ $$

Commented by Meritguide1234 last updated on 23/Oct/18

splendid work

$${splendid}\:{work} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com