Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46182 by Meritguide1234 last updated on 22/Oct/18

Commented by maxmathsup by imad last updated on 22/Oct/18

 we have 1−x^2  +x^4 −....=Σ_(n=0) ^∞ (−x^2 )^n  =(1/(1+x^2 )) and  cos^2 x  +cos^4 x +cos^6 x +...=cos^2 x(1+cos^2 x +cos^4 x +....)  =cos^2 x{(1/(1−cos^2 x))}=(1/(tan^2 x)) ⇒ I =  ∫_0 ^(π/4)   ((tan^2 x)/(1+x^2 ))dx by parts    I =∫_0 ^(π/4)    tan^2 x(Σ_(n=0) ^∞ (−1)^n  x^n )ex =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^(π/4)  x^n  tan^2 x dt  =Σ_(n=0) ^∞  (−1)^n  A_n   with A_n =∫_0 ^(π/4)  x^n  tan^2 x dx  by parts   A_n =[(1/(n+1)) x^(n+1) tan^2 x]_0 ^(π/4)  −∫_0 ^(π/4)  (x^(n+1) /(n+1)) (2tanx)(1+tan^2 x)dx  =(1/(n+1))((π/4))^(n+1)   −(2/(n+1)) ∫_0 ^(π/4)  x^(n+1) tanx dx −(2/(n+1)) ∫_0 ^(π/4) x^(n+1) tan^3 t dt...be continued...

$$\:{we}\:{have}\:\mathrm{1}−{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} −....=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{x}^{\mathrm{2}} \right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{and} \\ $$$${cos}^{\mathrm{2}} {x}\:\:+{cos}^{\mathrm{4}} {x}\:+{cos}^{\mathrm{6}} {x}\:+...={cos}^{\mathrm{2}} {x}\left(\mathrm{1}+{cos}^{\mathrm{2}} {x}\:+{cos}^{\mathrm{4}} {x}\:+....\right) \\ $$$$={cos}^{\mathrm{2}} {x}\left\{\frac{\mathrm{1}}{\mathrm{1}−{cos}^{\mathrm{2}} {x}}\right\}=\frac{\mathrm{1}}{{tan}^{\mathrm{2}} {x}}\:\Rightarrow\:{I}\:=\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tan}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{by}\:{parts}\: \\ $$$$\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:{tan}^{\mathrm{2}} {x}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} \right){ex}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{x}^{{n}} \:{tan}^{\mathrm{2}} {x}\:{dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{A}_{{n}} \:\:{with}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{x}^{{n}} \:{tan}^{\mathrm{2}} {x}\:{dx}\:\:{by}\:{parts}\: \\ $$$${A}_{{n}} =\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}+\mathrm{1}} {tan}^{\mathrm{2}} {x}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:\left(\mathrm{2}{tanx}\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx} \\ $$$$=\frac{\mathrm{1}}{{n}+\mathrm{1}}\left(\frac{\pi}{\mathrm{4}}\right)^{{n}+\mathrm{1}} \:\:−\frac{\mathrm{2}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{x}^{{n}+\mathrm{1}} {tanx}\:{dx}\:−\frac{\mathrm{2}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {x}^{{n}+\mathrm{1}} {tan}^{\mathrm{3}} {t}\:{dt}...{be}\:{continued}... \\ $$

Commented by maxmathsup by imad last updated on 22/Oct/18

we have 0≤x≤(π/4) ⇒ 0≤tan^2 x≤ 1 ⇒ 0≤ ((tan^2 x)/(1+x^2 )) ≤1 ⇒   0 ≤ ∫_0 ^(π/4)    ((tan^2 x)/(1+x^2 ))dx ≤ ∫_0 ^(π/4)  dx =(π/4) ⇒ 0≤ I  ≤ (π/4) .....

$${we}\:{have}\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}}\:\Rightarrow\:\mathrm{0}\leqslant{tan}^{\mathrm{2}} {x}\leqslant\:\mathrm{1}\:\Rightarrow\:\mathrm{0}\leqslant\:\frac{{tan}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\leqslant\mathrm{1}\:\Rightarrow\: \\ $$$$\mathrm{0}\:\leqslant\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{tan}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\leqslant\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{dx}\:=\frac{\pi}{\mathrm{4}}\:\Rightarrow\:\mathrm{0}\leqslant\:{I}\:\:\leqslant\:\frac{\pi}{\mathrm{4}}\:..... \\ $$

Commented by Meritguide1234 last updated on 22/Oct/18

very good

$${very}\:{good} \\ $$

Commented by maxmathsup by imad last updated on 22/Oct/18

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Oct/18

N_r =(1/(1+x^2 ))    D_r =((cos^2 x)/(1−cos^2 x))=cot^2 x  ∫_0 ^(π/4) (1/((1+x^2 )))×(1/(cot^2 x))dx  ∫_0 ^(π/4) ((tan^2 x)/(1+x^2 ))dx

$${N}_{{r}} =\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\:\:{D}_{{r}} =\frac{{cos}^{\mathrm{2}} {x}}{\mathrm{1}−{cos}^{\mathrm{2}} {x}}={cot}^{\mathrm{2}} {x} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}×\frac{\mathrm{1}}{{cot}^{\mathrm{2}} {x}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{tan}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Oct/18

Commented by Meritguide1234 last updated on 22/Oct/18

need more specific ...

$${need}\:{more}\:{specific}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com