Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 46277 by rahul 19 last updated on 23/Oct/18

Commented by rahul 19 last updated on 23/Oct/18

this is possible only when sin3x=1  and sin7x=1......  .....

$${this}\:{is}\:{possible}\:{only}\:{when}\:{sin}\mathrm{3}{x}=\mathrm{1} \\ $$$${and}\:{sin}\mathrm{7}{x}=\mathrm{1}...... \\ $$$$..... \\ $$

Commented by MJS last updated on 23/Oct/18

yes! you already found the solution, all you  need is to calculate it

$$\mathrm{yes}!\:\mathrm{you}\:\mathrm{already}\:\mathrm{found}\:\mathrm{the}\:\mathrm{solution},\:\mathrm{all}\:\mathrm{you} \\ $$$$\mathrm{need}\:\mathrm{is}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{it} \\ $$

Answered by MJS last updated on 27/Oct/18

sin 3x =1 ∧ −2π≤x≤2π ⇒  ⇒ x=(−((11)/6)+((2m)/3))π∧m∈N∧0≤m≤5  sin 7x =1 ∧ −2π≤x≤2π ⇒  ⇒ x=(−((27)/(14))+((2n)/7))π∧n∈N∧0≤n≤13  −((11)/6)+((2m)/3)=−((27)/(14))+((2n)/7)  m=((3n−1)/7) ⇒ n=5+7z∧m=3z+2∧z∈Z  0≤m≤5∧0≤n≤13 ⇒ z=1∧n=13∧m=5  ⇒ one solution x=((3π)/2) ⇒ (A) is the right answer

$$\mathrm{sin}\:\mathrm{3}{x}\:=\mathrm{1}\:\wedge\:−\mathrm{2}\pi\leqslant{x}\leqslant\mathrm{2}\pi\:\Rightarrow \\ $$$$\Rightarrow\:{x}=\left(−\frac{\mathrm{11}}{\mathrm{6}}+\frac{\mathrm{2}{m}}{\mathrm{3}}\right)\pi\wedge{m}\in\mathbb{N}\wedge\mathrm{0}\leqslant{m}\leqslant\mathrm{5} \\ $$$$\mathrm{sin}\:\mathrm{7}{x}\:=\mathrm{1}\:\wedge\:−\mathrm{2}\pi\leqslant{x}\leqslant\mathrm{2}\pi\:\Rightarrow \\ $$$$\Rightarrow\:{x}=\left(−\frac{\mathrm{27}}{\mathrm{14}}+\frac{\mathrm{2}{n}}{\mathrm{7}}\right)\pi\wedge{n}\in\mathbb{N}\wedge\mathrm{0}\leqslant{n}\leqslant\mathrm{13} \\ $$$$−\frac{\mathrm{11}}{\mathrm{6}}+\frac{\mathrm{2}{m}}{\mathrm{3}}=−\frac{\mathrm{27}}{\mathrm{14}}+\frac{\mathrm{2}{n}}{\mathrm{7}} \\ $$$${m}=\frac{\mathrm{3}{n}−\mathrm{1}}{\mathrm{7}}\:\Rightarrow\:{n}=\mathrm{5}+\mathrm{7}{z}\wedge{m}=\mathrm{3}{z}+\mathrm{2}\wedge{z}\in\mathbb{Z} \\ $$$$\mathrm{0}\leqslant{m}\leqslant\mathrm{5}\wedge\mathrm{0}\leqslant{n}\leqslant\mathrm{13}\:\Rightarrow\:{z}=\mathrm{1}\wedge{n}=\mathrm{13}\wedge{m}=\mathrm{5} \\ $$$$\Rightarrow\:\mathrm{one}\:\mathrm{solution}\:{x}=\frac{\mathrm{3}\pi}{\mathrm{2}}\:\Rightarrow\:\left({A}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{right}\:\mathrm{answer} \\ $$

Commented by rahul 19 last updated on 24/Oct/18

Sir, ans. is (B) i.e 2 solutions!  plss explain last 2 lines .......  m=((3n−1)/7)....what is z?.....how you  found range of m,n ?

$${Sir},\:{ans}.\:{is}\:\left({B}\right)\:{i}.{e}\:\mathrm{2}\:{solutions}! \\ $$$${plss}\:{explain}\:{last}\:\mathrm{2}\:{lines}\:....... \\ $$$${m}=\frac{\mathrm{3}{n}−\mathrm{1}}{\mathrm{7}}....{what}\:{is}\:{z}?.....{how}\:{you} \\ $$$${found}\:{range}\:{of}\:{m},{n}\:? \\ $$

Commented by MJS last updated on 24/Oct/18

sorry I′d been in a hurry. there′s a 2^(nd)  solution  with z=0∧n=5∧m=2

$$\mathrm{sorry}\:\mathrm{I}'\mathrm{d}\:\mathrm{been}\:\mathrm{in}\:\mathrm{a}\:\mathrm{hurry}.\:\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{solution} \\ $$$$\mathrm{with}\:{z}=\mathrm{0}\wedge{n}=\mathrm{5}\wedge{m}=\mathrm{2} \\ $$

Commented by MJS last updated on 24/Oct/18

range of m, n is clear because of the given  borders [−2π; 2π]  m=((3n−1)/7)∧m∈Z⇒((3n−1)/7)∈Z⇒7∣(3n−1)⇒n∈{...; −9; −2; 5; 12; 19; ...}⇒n=5+7z

$$\mathrm{range}\:\mathrm{of}\:{m},\:{n}\:\mathrm{is}\:\mathrm{clear}\:\mathrm{because}\:\mathrm{of}\:\mathrm{the}\:\mathrm{given} \\ $$$$\mathrm{borders}\:\left[−\mathrm{2}\pi;\:\mathrm{2}\pi\right] \\ $$$${m}=\frac{\mathrm{3}{n}−\mathrm{1}}{\mathrm{7}}\wedge{m}\in\mathbb{Z}\Rightarrow\frac{\mathrm{3}{n}−\mathrm{1}}{\mathrm{7}}\in\mathbb{Z}\Rightarrow\mathrm{7}\mid\left(\mathrm{3}{n}−\mathrm{1}\right)\Rightarrow{n}\in\left\{...;\:−\mathrm{9};\:−\mathrm{2};\:\mathrm{5};\:\mathrm{12};\:\mathrm{19};\:...\right\}\Rightarrow{n}=\mathrm{5}+\mathrm{7}{z} \\ $$

Commented by rahul 19 last updated on 27/Oct/18

Here we are using hit and trial method,  right? So how will you prove no other  solution exists except these two....??

$${Here}\:{we}\:{are}\:{using}\:{hit}\:{and}\:{trial}\:{method}, \\ $$$${right}?\:{So}\:{how}\:{will}\:{you}\:{prove}\:{no}\:{other} \\ $$$${solution}\:{exists}\:{except}\:{these}\:{two}....?? \\ $$

Commented by MJS last updated on 27/Oct/18

not hit and trial. we know −2≤2sin 3x ≤2 and  −1≤sin x ≤1. we need sin 3x =1∧sin 7x =1  I generally solved both equations and looked  for which values of m and n the value of x is  in the demanded interval [−2π; 2π]. then I  needed to find those values of x for which  both equations are true. I can′t see any other  path...

$$\mathrm{not}\:\mathrm{hit}\:\mathrm{and}\:\mathrm{trial}.\:\mathrm{we}\:\mathrm{know}\:−\mathrm{2}\leqslant\mathrm{2sin}\:\mathrm{3}{x}\:\leqslant\mathrm{2}\:\mathrm{and} \\ $$$$−\mathrm{1}\leqslant\mathrm{sin}\:{x}\:\leqslant\mathrm{1}.\:\mathrm{we}\:\mathrm{need}\:\mathrm{sin}\:\mathrm{3}{x}\:=\mathrm{1}\wedge\mathrm{sin}\:\mathrm{7}{x}\:=\mathrm{1} \\ $$$$\mathrm{I}\:\mathrm{generally}\:\mathrm{solved}\:\mathrm{both}\:\mathrm{equations}\:\mathrm{and}\:\mathrm{looked} \\ $$$$\mathrm{for}\:\mathrm{which}\:\mathrm{values}\:\mathrm{of}\:{m}\:\mathrm{and}\:{n}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{is} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{demanded}\:\mathrm{interval}\:\left[−\mathrm{2}\pi;\:\mathrm{2}\pi\right].\:\mathrm{then}\:\mathrm{I} \\ $$$$\mathrm{needed}\:\mathrm{to}\:\mathrm{find}\:\mathrm{those}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{for}\:\mathrm{which} \\ $$$$\mathrm{both}\:\mathrm{equations}\:\mathrm{are}\:\mathrm{true}.\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{see}\:\mathrm{any}\:\mathrm{other} \\ $$$$\mathrm{path}... \\ $$

Commented by MJS last updated on 27/Oct/18

you can compare the sets of solutions  sin 3x =1 ⇒  ⇒ x∈{−((11π)/6); −((7π)/6); −(π/2); (π/6); ((5π)/6); ((3π)/2)}  sin 7x =1 ⇒  ⇒ x∈{−((27π)/(14)); −((23π)/(14)); −((19π)/(14)); −((15π)/(14)); −((11π)/(14)); −(π/2); −((3π)/(14)); (π/(14)); ((5π)/(14)); ((9π)/(14)); ((13π)/(14)); ((17π)/(14)); ((3π)/2); ((25π)/(14))}

$$\mathrm{you}\:\mathrm{can}\:\mathrm{compare}\:\mathrm{the}\:\mathrm{sets}\:\mathrm{of}\:\mathrm{solutions} \\ $$$$\mathrm{sin}\:\mathrm{3}{x}\:=\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:{x}\in\left\{−\frac{\mathrm{11}\pi}{\mathrm{6}};\:−\frac{\mathrm{7}\pi}{\mathrm{6}};\:−\frac{\pi}{\mathrm{2}};\:\frac{\pi}{\mathrm{6}};\:\frac{\mathrm{5}\pi}{\mathrm{6}};\:\frac{\mathrm{3}\pi}{\mathrm{2}}\right\} \\ $$$$\mathrm{sin}\:\mathrm{7}{x}\:=\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:{x}\in\left\{−\frac{\mathrm{27}\pi}{\mathrm{14}};\:−\frac{\mathrm{23}\pi}{\mathrm{14}};\:−\frac{\mathrm{19}\pi}{\mathrm{14}};\:−\frac{\mathrm{15}\pi}{\mathrm{14}};\:−\frac{\mathrm{11}\pi}{\mathrm{14}};\:−\frac{\pi}{\mathrm{2}};\:−\frac{\mathrm{3}\pi}{\mathrm{14}};\:\frac{\pi}{\mathrm{14}};\:\frac{\mathrm{5}\pi}{\mathrm{14}};\:\frac{\mathrm{9}\pi}{\mathrm{14}};\:\frac{\mathrm{13}\pi}{\mathrm{14}};\:\frac{\mathrm{17}\pi}{\mathrm{14}};\:\frac{\mathrm{3}\pi}{\mathrm{2}};\:\frac{\mathrm{25}\pi}{\mathrm{14}}\right\} \\ $$

Commented by rahul 19 last updated on 28/Oct/18

thank you so much sir !����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com