Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 46292 by Umar last updated on 23/Oct/18

A +ve point charge of magnitude q is located on the y−axis   at a point of y=+d and another −ve  charge of same magnitude  is located on the point y=−d.   A third +ve charge of same magnitude is located   at some point on x−axis.     (1)− what is the magnitude and direction of the force on                 third charge ?                 (a)− when its located on the origin.                 (b)−  when its coordinate is x.      (2)− show that when x is large compared to distance d,                  the force in (b) is inversely proportionalto the                  cube of the distance from origin.

$${A}\:+{ve}\:{point}\:{charge}\:{of}\:{magnitude}\:{q}\:{is}\:{located}\:{on}\:{the}\:{y}−{axis}\: \\ $$$${at}\:{a}\:{point}\:{of}\:{y}=+{d}\:{and}\:{another}\:−{ve}\:\:{charge}\:{of}\:{same}\:{magnitude} \\ $$$${is}\:{located}\:{on}\:{the}\:{point}\:{y}=−{d}.\: \\ $$$${A}\:{third}\:+{ve}\:{charge}\:{of}\:{same}\:{magnitude}\:{is}\:{located}\: \\ $$$${at}\:{some}\:{point}\:{on}\:{x}−{axis}. \\ $$$$\:\:\:\left(\mathrm{1}\right)−\:{what}\:{is}\:{the}\:{magnitude}\:{and}\:{direction}\:{of}\:{the}\:{force}\:{on} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{third}\:{charge}\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}\right)−\:{when}\:{its}\:{located}\:{on}\:{the}\:{origin}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)−\:\:{when}\:{its}\:{coordinate}\:{is}\:{x}. \\ $$$$\:\:\:\:\left(\mathrm{2}\right)−\:{show}\:{that}\:{when}\:{x}\:{is}\:{large}\:{compared}\:{to}\:{distance}\:{d}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{the}\:{force}\:{in}\:\left({b}\right)\:{is}\:{inversely}\:{proportionalto}\:{the} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cube}\:{of}\:{the}\:{distance}\:{from}\:{origin}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Oct/18

a)Force on 3rd charge by charge A i s repulsive  force on 3rd charge by charge B is attrctive  net force on 3rd charge when it is at origin  is F=(1/(4πε_0 ))(q^2 /d^2 )+(1/(4πε_0 ))(q^2 /d^2 )=2×(1/(4πε_0 ))×(q^2 /d^2 )  direction is −ve yaxis  vecorically  F_1 ^→ =(1/(4πε_0 ))(q^2 /d^2 )(−j^→ )  F_2 ^→ =(1/(4πε_0 ))(q^2 /d^2 )(−j^→ )  net force=F_1 ^→ +F_2 ^→ =2×(1/(4πε_0 ))(q^2 /d^2 )(−j^→ )  b)F_1 ^→ =(1/(4πε_0 ))(q^2 /((d^2 +x^2 )^(3/2) ))(−dj+xi)  F_2 ^→ =(1/(4πε_0 ))(q^2 /((d^2 +x^2 )^(3/2) ))(−dj−xi)  F_R ^→ =F_1 ^→ +F_2 ^→ =(1/(4πε_0 ))(q^2 /((d^2 +x^2 )^(3/2) ))(−2dj)  net force =(1/(4πε_0 ))(q^2 /((d^2 +x^2 )^(3/2) ))×2d   direcection −ve y axis    F_R =(1/(4πε_0 ))(q^2 /({x^2 (1+(d^2 /x^2 ))}^(3/2) ))×2d≈(1/(4πε_0 ))×((q^2 ×2d)/x^3 )  [(d/x)→0 as x>>d]  [

$$\left.{a}\right){Force}\:{on}\:\mathrm{3}{rd}\:{charge}\:{by}\:{charge}\:{A}\:{i}\:{s}\:{repulsive} \\ $$$${force}\:{on}\:\mathrm{3}{rd}\:{charge}\:{by}\:{charge}\:{B}\:{is}\:{attrctive} \\ $$$${net}\:{force}\:{on}\:\mathrm{3}{rd}\:{charge}\:{when}\:{it}\:{is}\:{at}\:{origin} \\ $$$${is}\:{F}=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{{d}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{{d}^{\mathrm{2}} }=\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }×\frac{{q}^{\mathrm{2}} }{{d}^{\mathrm{2}} } \\ $$$${direction}\:{is}\:−{ve}\:{yaxis} \\ $$$${vecorically} \\ $$$$\overset{\rightarrow} {{F}}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{{d}^{\mathrm{2}} }\left(−\overset{\rightarrow} {{j}}\right) \\ $$$$\overset{\rightarrow} {{F}}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{{d}^{\mathrm{2}} }\left(−\overset{\rightarrow} {{j}}\right) \\ $$$${net}\:{force}=\overset{\rightarrow} {{F}}_{\mathrm{1}} +\overset{\rightarrow} {{F}}_{\mathrm{2}} =\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{{d}^{\mathrm{2}} }\left(−\overset{\rightarrow} {{j}}\right) \\ $$$$\left.{b}\right)\overset{\rightarrow} {{F}}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{\left({d}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\left(−{dj}+{xi}\right) \\ $$$$\overset{\rightarrow} {{F}}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{\left({d}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\left(−{dj}−{xi}\right) \\ $$$$\overset{\rightarrow} {{F}}_{{R}} =\overset{\rightarrow} {{F}}_{\mathrm{1}} +\overset{\rightarrow} {{F}}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{\left({d}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\left(−\mathrm{2}{dj}\right) \\ $$$${net}\:{force}\:=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{\left({d}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }×\mathrm{2}{d}\:\:\:{direcection}\:−{ve}\:{y}\:{axis} \\ $$$$ \\ $$$${F}_{{R}} =\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}^{\mathrm{2}} }{\left\{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{{d}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)\right\}^{\frac{\mathrm{3}}{\mathrm{2}}} }×\mathrm{2}{d}\approx\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }×\frac{{q}^{\mathrm{2}} ×\mathrm{2}{d}}{{x}^{\mathrm{3}} }\:\:\left[\frac{{d}}{{x}}\rightarrow\mathrm{0}\:{as}\:{x}>>{d}\right] \\ $$$$\left[\right. \\ $$$$ \\ $$$$ \\ $$

Commented by Umar last updated on 23/Oct/18

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com