Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 46474 by peter frank last updated on 28/Oct/18

a)[If tan^(−1) a+tan^(−1) b+tan^(−1) c=π  show that ((a+b+c)/(abc))=1  b)[  If  tanx=((nsinycosy)/(1−nsin^2 y))  show that tan(y−x)=(1−n)tany

$$\left.\mathrm{a}\right)\left[\mathrm{If}\:\mathrm{tan}^{−\mathrm{1}} \mathrm{a}+\mathrm{tan}^{−\mathrm{1}} \mathrm{b}+\mathrm{tan}^{−\mathrm{1}} \mathrm{c}=\pi\:\:\mathrm{show}\:\mathrm{that}\:\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{abc}}=\mathrm{1}\right. \\ $$$$\left.\mathrm{b}\right)\left[\:\:\mathrm{If}\:\:\mathrm{tanx}=\frac{\mathrm{nsinycosy}}{\mathrm{1}−\mathrm{nsin}^{\mathrm{2}} \mathrm{y}}\right. \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{tan}\left(\mathrm{y}−\mathrm{x}\right)=\left(\mathrm{1}−\mathrm{n}\right)\mathrm{tany} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by math1967 last updated on 27/Oct/18

pls.check q(a)

$${pls}.{check}\:{q}\left({a}\right) \\ $$

Commented by peter frank last updated on 28/Oct/18

ready sir

$$\mathrm{ready}\:\mathrm{sir} \\ $$

Answered by math1967 last updated on 27/Oct/18

Q b) L.H.S =((tany−tanx)/(1+tanxtany))  =((((siny)/(cosy)) −((nsinycosy)/(1−nsin^2 y)))/(1+((nsin^2 ycosy)/(cosy(1−nsin^2 y)))))  =((siny−nsin^3 y−nsinycos^2 y)/(cosy−nsin^2 ycosy+nsin^2 ycosy))  =((siny−nsiny(sin^2 y+cos^2 y))/(cosy))    =((siny(1−n))/(cosy))=(1−n)tany

$$\left.{Q}\:{b}\right)\:{L}.{H}.{S}\:=\frac{{tany}−{tanx}}{\mathrm{1}+{tanxtany}} \\ $$$$=\frac{\frac{{siny}}{{cosy}}\:−\frac{{nsinycosy}}{\mathrm{1}−{nsin}^{\mathrm{2}} {y}}}{\mathrm{1}+\frac{{nsin}^{\mathrm{2}} {ycosy}}{{cosy}\left(\mathrm{1}−{nsin}^{\mathrm{2}} {y}\right)}} \\ $$$$=\frac{{siny}−{nsin}^{\mathrm{3}} {y}−{nsinycos}^{\mathrm{2}} {y}}{{cosy}−{nsin}^{\mathrm{2}} {ycosy}+{nsin}^{\mathrm{2}} {ycosy}} \\ $$$$=\frac{{siny}−{nsiny}\left({sin}^{\mathrm{2}} {y}+{cos}^{\mathrm{2}} {y}\right)}{{cosy}}\:\: \\ $$$$=\frac{{siny}\left(\mathrm{1}−{n}\right)}{{cosy}}=\left(\mathrm{1}−{n}\right){tany} \\ $$

Answered by math1967 last updated on 28/Oct/18

lettan^(−1) a=α, tan^(−1) b=β ,tan^(−1) c=γ   a=tan α ,b=tan β,c=tan γ  Again α+β+γ=π   α+β=π−γ  tan (α+β)=tan (π−γ)  ((tan α+tan β)/(1−tan αtan β))=−tan γ  tan α+tan β=−tan γ+tan αtan βtan γ  ∴a+b+c=abc  ∴((a+b+c)/(abc))=1 proved

$${let}\mathrm{tan}^{−\mathrm{1}} {a}=\alpha,\:\mathrm{tan}^{−\mathrm{1}} {b}=\beta\:,\mathrm{tan}^{−\mathrm{1}} {c}=\gamma \\ $$$$\:{a}=\mathrm{tan}\:\alpha\:,{b}=\mathrm{tan}\:\beta,{c}=\mathrm{tan}\:\gamma \\ $$$${Again}\:\alpha+\beta+\gamma=\pi \\ $$$$\:\alpha+\beta=\pi−\gamma \\ $$$$\mathrm{tan}\:\left(\alpha+\beta\right)=\mathrm{tan}\:\left(\pi−\gamma\right) \\ $$$$\frac{\mathrm{tan}\:\alpha+\mathrm{tan}\:\beta}{\mathrm{1}−\mathrm{tan}\:\alpha\mathrm{tan}\:\beta}=−\mathrm{tan}\:\gamma \\ $$$$\mathrm{tan}\:\alpha+\mathrm{tan}\:\beta=−\mathrm{tan}\:\gamma+\mathrm{tan}\:\alpha\mathrm{tan}\:\beta\mathrm{tan}\:\gamma \\ $$$$\therefore{a}+{b}+{c}={abc} \\ $$$$\therefore\frac{{a}+{b}+{c}}{{abc}}=\mathrm{1}\:{proved} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com