Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 46502 by Ac Kesharwani last updated on 27/Oct/18

∫_0 ^∞ (((sin (x))/x))dx

$$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{sin}\:\left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\right)\boldsymbol{\mathrm{dx}} \\ $$

Commented by math khazana by abdo last updated on 27/Oct/18

let f(t)=∫_0 ^∞  ((sinx)/x)e^(−tx) dx with t≥0 we can prove   that f is continue derivable on [0,+∞[ and we have  f^′ (t)=−∫_0 ^∞  e^(−tx) sinx dx =−Im(∫_0 ^∞ e^(−tx+ix) dx) but  ∫_0 ^∞  e^((−t+i)x) dx=[(1/(−t+i)) e^((−t+i)x) ]_(x=0) ^(+∞) =((−1)/(−t+i))  =(1/(t−i))=((t+i)/(t^2 +1)) ⇒f^′ (t)=−(1/(1+t^2 )) ⇒  f(t)=−arctan(t)+λ  but ∃m>0 /  ∣f(t)∣≤m∫_0 ^∞  e^(−tx) dx=(m/t)→0 (t→+∞)⇒λ=(π/2)  f(t)=(π/2) −arctan(t) ⇒f(o)=∫_0 ^∞ ((sinx)/x)dx=(π/2)  (arctan0=0)

$${let}\:{f}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}}{e}^{−{tx}} {dx}\:{with}\:{t}\geqslant\mathrm{0}\:{we}\:{can}\:{prove}\: \\ $$$${that}\:{f}\:{is}\:{continue}\:{derivable}\:{on}\:\left[\mathrm{0},+\infty\left[\:{and}\:{we}\:{have}\right.\right. \\ $$$${f}^{'} \left({t}\right)=−\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}} {sinx}\:{dx}\:=−{Im}\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{tx}+{ix}} {dx}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{\left(−{t}+{i}\right){x}} {dx}=\left[\frac{\mathrm{1}}{−{t}+{i}}\:{e}^{\left(−{t}+{i}\right){x}} \right]_{{x}=\mathrm{0}} ^{+\infty} =\frac{−\mathrm{1}}{−{t}+{i}} \\ $$$$=\frac{\mathrm{1}}{{t}−{i}}=\frac{{t}+{i}}{{t}^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow{f}^{'} \left({t}\right)=−\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$${f}\left({t}\right)=−{arctan}\left({t}\right)+\lambda\:\:{but}\:\exists{m}>\mathrm{0}\:/ \\ $$$$\mid{f}\left({t}\right)\mid\leqslant{m}\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}} {dx}=\frac{{m}}{{t}}\rightarrow\mathrm{0}\:\left({t}\rightarrow+\infty\right)\Rightarrow\lambda=\frac{\pi}{\mathrm{2}} \\ $$$${f}\left({t}\right)=\frac{\pi}{\mathrm{2}}\:−{arctan}\left({t}\right)\:\Rightarrow{f}\left({o}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}{dx}=\frac{\pi}{\mathrm{2}} \\ $$$$\left({arctan}\mathrm{0}=\mathrm{0}\right) \\ $$

Answered by MJS last updated on 27/Oct/18

∫((sin x)/x)dx=Si(x) [integral−sinus, table of                                     values should exist somewhere                                     in the www]  Si(∞)−Si(0)=(π/2)

$$\int\frac{\mathrm{sin}\:{x}}{{x}}{dx}=\mathrm{Si}\left({x}\right)\:\left[\mathrm{integral}−\mathrm{sinus},\:\mathrm{table}\:\mathrm{of}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{values}\:\mathrm{should}\:\mathrm{exist}\:\mathrm{somewhere} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{in}\:\mathrm{the}\:\mathrm{www}\right] \\ $$$$\mathrm{Si}\left(\infty\right)−\mathrm{Si}\left(\mathrm{0}\right)=\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com