Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 46609 by maxmathsup by imad last updated on 29/Oct/18

solve    x y^(′′)  −e^(−x) y^′    =x sinx

$${solve}\:\:\:\:{x}\:{y}^{''} \:−{e}^{−{x}} {y}^{'} \:\:\:={x}\:{sinx} \\ $$

Commented by maxmathsup by imad last updated on 11/Nov/18

hangement y^′ =z give xz^′ −e^(−x) z =xsinx  (he)⇒xz^′  −e^(−x) z =0 ⇒xz^′  =e^(−x) z ⇒(z^′ /z) =(e^(−x) /x) ⇒ln∣z∣=∫ (e^(−x) /x)dx +α ⇒  z =K e^(∫(e^(−x) /x)dx)   mvc method gve z^′ =K^′  e^(∫ (e^(−x) /x)dx)  +K (e^(−x) /x) e^(∫ (e^(−x) /x)dx)   (e) ⇒xK^′  e^(∫ (e^(−x) /x)dx)   +Ke^(−x)  e^(∫ (e^(−x) /x)dx)  −e^(−x) K e^(∫(e^(−x) /x)dx)  =xsinx ⇒  xK^′  e^(∫(e^(−x) /x)dx)  =xsinx ⇒K^′   =sinx e^(−∫ (e^(−x) /x)dx)  ⇒   K(x)= ∫_. ^x  (sint e^(−∫ (e^(−t) /t)dt) )dt +λ ⇒z =(∫_. ^x (sint e^(−∫(e^(−t) /t)dt) )dt +λ)e^(∫ (e^(−x) /x))  dx  but y^′ (x)=z(x) ⇒y(x)=∫ z(x)dx +β  and the function z is determined.

$${hangement}\:{y}^{'} ={z}\:{give}\:{xz}^{'} −{e}^{−{x}} {z}\:={xsinx} \\ $$$$\left({he}\right)\Rightarrow{xz}^{'} \:−{e}^{−{x}} {z}\:=\mathrm{0}\:\Rightarrow{xz}^{'} \:={e}^{−{x}} {z}\:\Rightarrow\frac{{z}^{'} }{{z}}\:=\frac{{e}^{−{x}} }{{x}}\:\Rightarrow{ln}\mid{z}\mid=\int\:\frac{{e}^{−{x}} }{{x}}{dx}\:+\alpha\:\Rightarrow \\ $$$${z}\:={K}\:{e}^{\int\frac{{e}^{−{x}} }{{x}}{dx}} \:\:{mvc}\:{method}\:{gve}\:{z}^{'} ={K}^{'} \:{e}^{\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \:+{K}\:\frac{{e}^{−{x}} }{{x}}\:{e}^{\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \\ $$$$\left({e}\right)\:\Rightarrow{xK}^{'} \:{e}^{\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \:\:+{Ke}^{−{x}} \:{e}^{\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \:−{e}^{−{x}} {K}\:{e}^{\int\frac{{e}^{−{x}} }{{x}}{dx}} \:={xsinx}\:\Rightarrow \\ $$$${xK}^{'} \:{e}^{\int\frac{{e}^{−{x}} }{{x}}{dx}} \:={xsinx}\:\Rightarrow{K}^{'} \:\:={sinx}\:{e}^{−\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \:\Rightarrow\: \\ $$$${K}\left({x}\right)=\:\int_{.} ^{{x}} \:\left({sint}\:{e}^{−\int\:\frac{{e}^{−{t}} }{{t}}{dt}} \right){dt}\:+\lambda\:\Rightarrow{z}\:=\left(\int_{.} ^{{x}} \left({sint}\:{e}^{−\int\frac{{e}^{−{t}} }{{t}}{dt}} \right){dt}\:+\lambda\right){e}^{\int\:\frac{{e}^{−{x}} }{{x}}} \:{dx} \\ $$$${but}\:{y}^{'} \left({x}\right)={z}\left({x}\right)\:\Rightarrow{y}\left({x}\right)=\int\:{z}\left({x}\right){dx}\:+\beta\:\:{and}\:{the}\:{function}\:{z}\:{is}\:{determined}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com