Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 46959 by rahul 19 last updated on 03/Nov/18

The reminder when polynomial  1+x^2 +x^4 +x^6 +....+x^(22)  is divided by  1+x^ +x^2 +x^3 +.....+x^(11)  is =?

$${The}\:{reminder}\:{when}\:{polynomial} \\ $$$$\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} +....+{x}^{\mathrm{22}} \:{is}\:{divided}\:{by} \\ $$$$\mathrm{1}+{x}^{} +{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.....+{x}^{\mathrm{11}} \:{is}\:=? \\ $$

Commented by rahul 19 last updated on 03/Nov/18

I ′ m getting 2 which is wrong!  we can see they both forms a G.P  ⇒remainder when  ((x^(12) +1)/(x+1)) = 2  (cancelling common terms....)  Where am i wrong??

$${I}\:'\:{m}\:{getting}\:\mathrm{2}\:{which}\:{is}\:{wrong}! \\ $$$${we}\:{can}\:{see}\:{they}\:{both}\:{forms}\:{a}\:{G}.{P} \\ $$$$\Rightarrow{remainder}\:{when}\:\:\frac{{x}^{\mathrm{12}} +\mathrm{1}}{{x}+\mathrm{1}}\:=\:\mathrm{2} \\ $$$$\left({cancelling}\:{common}\:{terms}....\right) \\ $$$${Where}\:{am}\:{i}\:{wrong}?? \\ $$

Commented by maxmathsup by imad last updated on 03/Nov/18

let p(x)=1+x^2  +x^4  +...+x^(22)  ⇒p(x)=1+x^2  +(x^2 )^2  +...(x^2 )^(11)   = ((1−(x^2 )^(12) )/(1−x^2 )) if x^2 ≠1 ⇒ p(x)=((x^(24) −1)/(x^2  −1))  let q(x)=1+x+x^2  +...x^(11)  ⇒  q(x)=((1−x^(12) )/(1−x)) if x≠1 ⇒((p(x)/(q(x))) =((x^(24) −1)/(x^2 −1)) ((x−1)/(x^(12) −1)) = ((x^(24) −1)/((x+1)(x^(12) −1)))  =(((x^(12) )^2 −1)/((x+1)(x^(12) −1))) =((x^(12)  +1)/(x+1))  x^(12) +1 =0 ⇒x^(12) =e^(i(2k+1)π)  ⇒the roots are x_k =e^(i(((2k+1)π)/(12)))   k∈[[0,11]] ⇒  x^(12)  +1 =Π_(k=0) ^(11)  (x−e^(i(((2k+1)π)/(12))) ) ⇒ R(x) =((Π_(k=0) ^(11) (x−e^(i(((2k+1)π)/n)) ))/(x+1))

$${let}\:{p}\left({x}\right)=\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \:+...+{x}^{\mathrm{22}} \:\Rightarrow{p}\left({x}\right)=\mathrm{1}+{x}^{\mathrm{2}} \:+\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} \:+...\left({x}^{\mathrm{2}} \right)^{\mathrm{11}} \\ $$$$=\:\frac{\mathrm{1}−\left({x}^{\mathrm{2}} \right)^{\mathrm{12}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:{if}\:{x}^{\mathrm{2}} \neq\mathrm{1}\:\Rightarrow\:{p}\left({x}\right)=\frac{{x}^{\mathrm{24}} −\mathrm{1}}{{x}^{\mathrm{2}} \:−\mathrm{1}}\:\:{let}\:{q}\left({x}\right)=\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+...{x}^{\mathrm{11}} \:\Rightarrow \\ $$$${q}\left({x}\right)=\frac{\mathrm{1}−{x}^{\mathrm{12}} }{\mathrm{1}−{x}}\:{if}\:{x}\neq\mathrm{1}\:\Rightarrow\frac{{p}\left({x}\right.}{{q}\left({x}\right)}\:=\frac{{x}^{\mathrm{24}} −\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{1}}\:\frac{{x}−\mathrm{1}}{{x}^{\mathrm{12}} −\mathrm{1}}\:=\:\frac{{x}^{\mathrm{24}} −\mathrm{1}}{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{12}} −\mathrm{1}\right)} \\ $$$$=\frac{\left({x}^{\mathrm{12}} \right)^{\mathrm{2}} −\mathrm{1}}{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{12}} −\mathrm{1}\right)}\:=\frac{{x}^{\mathrm{12}} \:+\mathrm{1}}{{x}+\mathrm{1}} \\ $$$${x}^{\mathrm{12}} +\mathrm{1}\:=\mathrm{0}\:\Rightarrow{x}^{\mathrm{12}} ={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi} \:\Rightarrow{the}\:{roots}\:{are}\:{x}_{{k}} ={e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{12}}} \:\:{k}\in\left[\left[\mathrm{0},\mathrm{11}\right]\right]\:\Rightarrow \\ $$$${x}^{\mathrm{12}} \:+\mathrm{1}\:=\prod_{{k}=\mathrm{0}} ^{\mathrm{11}} \:\left({x}−{e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{12}}} \right)\:\Rightarrow\:{R}\left({x}\right)\:=\frac{\prod_{{k}=\mathrm{0}} ^{\mathrm{11}} \left({x}−{e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}} \right)}{{x}+\mathrm{1}} \\ $$

Commented by MJS last updated on 03/Nov/18

((x^(12) +1)/(x+1))=x^(11) −x^(10) +x^9 −x^8 ...+x−1+(2/(x+1))

$$\frac{{x}^{\mathrm{12}} +\mathrm{1}}{{x}+\mathrm{1}}={x}^{\mathrm{11}} −{x}^{\mathrm{10}} +{x}^{\mathrm{9}} −{x}^{\mathrm{8}} ...+{x}−\mathrm{1}+\frac{\mathrm{2}}{{x}+\mathrm{1}} \\ $$

Commented by maxmathsup by imad last updated on 03/Nov/18

thanks sir for this remak.

$${thanks}\:{sir}\:{for}\:{this}\:{remak}. \\ $$

Commented by rahul 19 last updated on 04/Nov/18

thanks sir!����

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Nov/18

S_1 =((1{(x^2 )^n_1  −1})/(x^2 −1))  now 1×(x^2 )^(n_1 −1) =x^(22)    n_1 =12  S_2 =((1{x^n_2  −1})/(x−1))  x^(n_2 −1) =x^(11)    n_2 =12  (S_1 /S_2 )=((((x^2 )^(12) −1)/(x^2 −1))/((x^(12) −1)/(x−1)))=(((x^(12) +1)(x^(12) −1)×x−1)/((x+1)(x−1)×(x^(12) −1)))  =((x^(12) +1)/(x+1))  R=(−1)^(12) +1=2

$${S}_{\mathrm{1}} =\frac{\mathrm{1}\left\{\left({x}^{\mathrm{2}} \right)^{{n}_{\mathrm{1}} } −\mathrm{1}\right\}}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${now}\:\mathrm{1}×\left({x}^{\mathrm{2}} \right)^{{n}_{\mathrm{1}} −\mathrm{1}} ={x}^{\mathrm{22}} \:\:\:{n}_{\mathrm{1}} =\mathrm{12} \\ $$$${S}_{\mathrm{2}} =\frac{\mathrm{1}\left\{{x}^{{n}_{\mathrm{2}} } −\mathrm{1}\right\}}{{x}−\mathrm{1}} \\ $$$${x}^{{n}_{\mathrm{2}} −\mathrm{1}} ={x}^{\mathrm{11}} \:\:\:{n}_{\mathrm{2}} =\mathrm{12} \\ $$$$\frac{{S}_{\mathrm{1}} }{{S}_{\mathrm{2}} }=\frac{\frac{\left({x}^{\mathrm{2}} \right)^{\mathrm{12}} −\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{1}}}{\frac{{x}^{\mathrm{12}} −\mathrm{1}}{{x}−\mathrm{1}}}=\frac{\left({x}^{\mathrm{12}} +\mathrm{1}\right)\left({x}^{\mathrm{12}} −\mathrm{1}\right)×{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{1}\right)×\left({x}^{\mathrm{12}} −\mathrm{1}\right)} \\ $$$$=\frac{{x}^{\mathrm{12}} +\mathrm{1}}{{x}+\mathrm{1}} \\ $$$${R}=\left(−\mathrm{1}\right)^{\mathrm{12}} +\mathrm{1}=\mathrm{2} \\ $$

Commented by rahul 19 last updated on 03/Nov/18

Sir, correct answer is   2(1+x^2 +x^4 +.....+x^(10) )..

$${Sir},\:{correct}\:{answer}\:{is}\: \\ $$$$\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +.....+{x}^{\mathrm{10}} \right).. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Nov/18

is it possible ...let other solve the question...i   dl no think so...

$${is}\:{it}\:{possible}\:...{let}\:{other}\:{solve}\:{the}\:{question}...{i}\: \\ $$$${dl}\:{no}\:{think}\:{so}... \\ $$

Commented by $@ty@m last updated on 03/Nov/18

x+1∣x^(12) +1∣x^(11) −x^(10) .....−1             x^(12) +x^(11)             −−−−            −x^(11) +1            −x^(11) −x^(10)            −−−−−−               x^(10) +1               .........                .........           −−−−−−                −x+1                 −x−1           −−−−−−                            2            −−−−−−

$${x}+\mathrm{1}\mid{x}^{\mathrm{12}} +\mathrm{1}\mid{x}^{\mathrm{11}} −{x}^{\mathrm{10}} .....−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{12}} +{x}^{\mathrm{11}} \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:−{x}^{\mathrm{11}} +\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:−{x}^{\mathrm{11}} −{x}^{\mathrm{10}} \\ $$$$\:\:\:\:\:\:\:\:\:−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{10}} +\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:......... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:......... \\ $$$$\:\:\:\:\:\:\:\:\:−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{x}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{x}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Commented by rahul 19 last updated on 04/Nov/18

thank you sirs! ����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com