Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 47480 by ajfour last updated on 10/Nov/18

Answered by MrW3 last updated on 10/Nov/18

assume the major and minor axes  are parallel to x axis and y axis.  eqn.  (((x−h)^2 )/u^2 )+(((y−k)^2 )/v^2 )=1  h=((a+c)/2)  k=((b+d)/2)  (((a−h)^2 )/u^2 )+(((−k)^2 )/v^2 )=1   ...(i)  (((−h)^2 )/u^2 )+(((b−k)^2 )/v^2 )=1   ...(ii)  (((a−h)^2 (b−k)^2 −h^2 k^2 )/u^2 )=(b−k)^2 −k^2   (1/u^2 )=(((b−k)^2 −k^2 )/((a−h)^2 (b−k)^2 −h^2 k^2 ))=((b(b−2k))/([(a−h)(b−k)+hk][(a−h)(b−k)−hk]))  ⇒(1/u^2 )=((4bd)/((ab+cd)(bc+ad)))    (((b−k)^2 (a−h)^2 −h^2 k^2 )/v^2 )=(a−h)^2  −h^2   (1/v^2 )=(((a−h)^2  −h^2 )/((b−k)^2 (a−h)^2 −h^2 k^2 ))=((a(a−2h))/([(a−h)(b−k)+hk][(a−h)(b−k)−hk]))  ⇒(1/v^2 )=((4ac)/((ab+cd)(bc+ad)))  eqn. of ellipse:  (((2x−a−c)^2 bd)/((ab+cd)(bc+ad)))+(((2y−b−d)^2 ac)/((ab+cd)(bc+ad)))=1  or  ⇒(2x−a−c)^2 bd+(2y−b−d)^2 ac=(ab+cd)(bc+ad)

$${assume}\:{the}\:{major}\:{and}\:{minor}\:{axes} \\ $$$${are}\:{parallel}\:{to}\:{x}\:{axis}\:{and}\:{y}\:{axis}. \\ $$$${eqn}. \\ $$$$\frac{\left({x}−{h}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} }+\frac{\left({y}−{k}\right)^{\mathrm{2}} }{{v}^{\mathrm{2}} }=\mathrm{1} \\ $$$${h}=\frac{{a}+{c}}{\mathrm{2}} \\ $$$${k}=\frac{{b}+{d}}{\mathrm{2}} \\ $$$$\frac{\left({a}−{h}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} }+\frac{\left(−{k}\right)^{\mathrm{2}} }{{v}^{\mathrm{2}} }=\mathrm{1}\:\:\:...\left({i}\right) \\ $$$$\frac{\left(−{h}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} }+\frac{\left({b}−{k}\right)^{\mathrm{2}} }{{v}^{\mathrm{2}} }=\mathrm{1}\:\:\:...\left({ii}\right) \\ $$$$\frac{\left({a}−{h}\right)^{\mathrm{2}} \left({b}−{k}\right)^{\mathrm{2}} −{h}^{\mathrm{2}} {k}^{\mathrm{2}} }{{u}^{\mathrm{2}} }=\left({b}−{k}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{u}^{\mathrm{2}} }=\frac{\left({b}−{k}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} }{\left({a}−{h}\right)^{\mathrm{2}} \left({b}−{k}\right)^{\mathrm{2}} −{h}^{\mathrm{2}} {k}^{\mathrm{2}} }=\frac{{b}\left({b}−\mathrm{2}{k}\right)}{\left[\left({a}−{h}\right)\left({b}−{k}\right)+{hk}\right]\left[\left({a}−{h}\right)\left({b}−{k}\right)−{hk}\right]} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{u}^{\mathrm{2}} }=\frac{\mathrm{4}{bd}}{\left({ab}+{cd}\right)\left({bc}+{ad}\right)} \\ $$$$ \\ $$$$\frac{\left({b}−{k}\right)^{\mathrm{2}} \left({a}−{h}\right)^{\mathrm{2}} −{h}^{\mathrm{2}} {k}^{\mathrm{2}} }{{v}^{\mathrm{2}} }=\left({a}−{h}\right)^{\mathrm{2}} \:−{h}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{v}^{\mathrm{2}} }=\frac{\left({a}−{h}\right)^{\mathrm{2}} \:−{h}^{\mathrm{2}} }{\left({b}−{k}\right)^{\mathrm{2}} \left({a}−{h}\right)^{\mathrm{2}} −{h}^{\mathrm{2}} {k}^{\mathrm{2}} }=\frac{{a}\left({a}−\mathrm{2}{h}\right)}{\left[\left({a}−{h}\right)\left({b}−{k}\right)+{hk}\right]\left[\left({a}−{h}\right)\left({b}−{k}\right)−{hk}\right]} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{v}^{\mathrm{2}} }=\frac{\mathrm{4}{ac}}{\left({ab}+{cd}\right)\left({bc}+{ad}\right)} \\ $$$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{\left(\mathrm{2}{x}−{a}−{c}\right)^{\mathrm{2}} {bd}}{\left({ab}+{cd}\right)\left({bc}+{ad}\right)}+\frac{\left(\mathrm{2}{y}−{b}−{d}\right)^{\mathrm{2}} {ac}}{\left({ab}+{cd}\right)\left({bc}+{ad}\right)}=\mathrm{1} \\ $$$${or} \\ $$$$\Rightarrow\left(\mathrm{2}{x}−{a}−{c}\right)^{\mathrm{2}} {bd}+\left(\mathrm{2}{y}−{b}−{d}\right)^{\mathrm{2}} {ac}=\left({ab}+{cd}\right)\left({bc}+{ad}\right) \\ $$

Commented by ajfour last updated on 10/Nov/18

Thank you Sir. (Matches!)

$${Thank}\:{you}\:{Sir}.\:\left({Matches}!\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com