Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 48065 by maxmathsup by imad last updated on 18/Nov/18

let f    :  ]0,1[  contnue integrable  u_n =(−1)^n  ∫_0 ^1  x^n f(x)dx  prove that Σ u_n  cnverge and find its sum

$$\left.{let}\:{f}\:\:\:\::\:\:\right]\mathrm{0},\mathrm{1}\left[\:\:{contnue}\:{integrable}\:\:{u}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} {f}\left({x}\right){dx}\right. \\ $$$${prove}\:{that}\:\Sigma\:{u}_{{n}} \:{cnverge}\:{and}\:{find}\:{its}\:{sum} \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 23/Nov/18

we have Σ_(n=0) ^∞ u_n =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1 x^n f(x)dx  =∫_0 ^1 (Σ_(n=0) ^∞ (−x)^n f(x))dx (due to uniform convergence on [0,1]  =∫_0 ^1   ((f(x))/(1+x)) dx so Σ u_n  converges and its sum is ∫_0 ^1   ((f(x))/(1+x))dx.

$${we}\:{have}\:\sum_{{n}=\mathrm{0}} ^{\infty} {u}_{{n}} =\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {f}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{x}\right)^{{n}} {f}\left({x}\right)\right){dx}\:\left({due}\:{to}\:{uniform}\:{convergence}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\right. \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{f}\left({x}\right)}{\mathrm{1}+{x}}\:{dx}\:{so}\:\Sigma\:{u}_{{n}} \:{converges}\:{and}\:{its}\:{sum}\:{is}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{f}\left({x}\right)}{\mathrm{1}+{x}}{dx}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com