Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 48338 by ajfour last updated on 22/Nov/18

Commented by mr W last updated on 23/Nov/18

nice working!

$${nice}\:{working}! \\ $$

Commented by ajfour last updated on 22/Nov/18

For example   p=2 , q=4, r=3.  Find  x= ?.

$${For}\:{example}\:\:\:{p}=\mathrm{2}\:,\:{q}=\mathrm{4},\:{r}=\mathrm{3}. \\ $$$${Find}\:\:{x}=\:?. \\ $$

Commented by ajfour last updated on 22/Nov/18

Will this do Sir ?

$${Will}\:{this}\:{do}\:{Sir}\:? \\ $$

Commented by ajfour last updated on 22/Nov/18

Commented by ajfour last updated on 22/Nov/18

R^2 cos^(−1) (h/R)−h(√(R^2 −h^2 )) = p+q  R^2 cos^(−1) (h/R)−k(√(R^2 −k^2 )) = r+p     x = πR^2 −p−q−r  And     ((πR^2 )/4) = ((q+r)/2)+hk     ⇒ ((πR^2 )/4) =((q+r)/2)+h′k′R^2        R^( 2)  = (((q+r)/2)/((π/4)−h′k′))  ________________________   let (h/R) = h′   & (p/R^2 ) = p′ and so on  cos^(−1) h′−h′(√(1−h′^( 2) )) = (((p+q)/(q+r)))((π/2)−2h′k′)  cos^(−1) k′−k′(√(1−k′^( 2) )) = (((r+p)/(q+r)))((π/2)−2h′k′)   x = ((𝛑(q+r))/(((𝛑/2)−2h′k′)))−(p+q+r) .

$${R}^{\mathrm{2}} \mathrm{cos}^{−\mathrm{1}} \frac{{h}}{{R}}−{h}\sqrt{{R}^{\mathrm{2}} −{h}^{\mathrm{2}} }\:=\:{p}+{q} \\ $$$${R}^{\mathrm{2}} \mathrm{cos}^{−\mathrm{1}} \frac{{h}}{{R}}−{k}\sqrt{{R}^{\mathrm{2}} −{k}^{\mathrm{2}} }\:=\:{r}+{p} \\ $$$$\:\:\:{x}\:=\:\pi{R}^{\mathrm{2}} −{p}−{q}−{r} \\ $$$${And}\:\:\:\:\:\frac{\pi{R}^{\mathrm{2}} }{\mathrm{4}}\:=\:\frac{{q}+{r}}{\mathrm{2}}+{hk} \\ $$$$\:\:\:\Rightarrow\:\frac{\pi{R}^{\mathrm{2}} }{\mathrm{4}}\:=\frac{{q}+{r}}{\mathrm{2}}+{h}'{k}'{R}^{\mathrm{2}} \\ $$$$\:\:\:\:\:{R}^{\:\mathrm{2}} \:=\:\frac{\left({q}+{r}\right)/\mathrm{2}}{\frac{\pi}{\mathrm{4}}−{h}'{k}'} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:{let}\:\frac{{h}}{{R}}\:=\:{h}'\:\:\:\&\:\frac{{p}}{{R}^{\mathrm{2}} }\:=\:{p}'\:{and}\:{so}\:{on} \\ $$$$\mathrm{cos}^{−\mathrm{1}} {h}'−{h}'\sqrt{\mathrm{1}−{h}'^{\:\mathrm{2}} }\:=\:\left(\frac{{p}+{q}}{{q}+{r}}\right)\left(\frac{\pi}{\mathrm{2}}−\mathrm{2}{h}'{k}'\right) \\ $$$$\mathrm{cos}^{−\mathrm{1}} {k}'−{k}'\sqrt{\mathrm{1}−{k}'^{\:\mathrm{2}} }\:=\:\left(\frac{{r}+{p}}{{q}+{r}}\right)\left(\frac{\pi}{\mathrm{2}}−\mathrm{2}{h}'{k}'\right) \\ $$$$\:\boldsymbol{{x}}\:=\:\frac{\boldsymbol{\pi}\left(\boldsymbol{{q}}+\boldsymbol{{r}}\right)}{\left(\frac{\boldsymbol{\pi}}{\mathrm{2}}−\mathrm{2}\boldsymbol{{h}}'\boldsymbol{{k}}'\right)}−\left(\boldsymbol{{p}}+\boldsymbol{{q}}+\boldsymbol{{r}}\right)\:. \\ $$

Commented by MJS last updated on 22/Nov/18

tried with integrals  for your example I get  x=5.68110∧R=2.16174 ∨ x=144.410∧R=6.98799;  in the first case the center is shifted by   (((.143930)),((.253156)) ), in the second case by  (((.835304)),((.854448)) )

$$\mathrm{tried}\:\mathrm{with}\:\mathrm{integrals} \\ $$$$\mathrm{for}\:\mathrm{your}\:\mathrm{example}\:\mathrm{I}\:\mathrm{get} \\ $$$${x}=\mathrm{5}.\mathrm{68110}\wedge{R}=\mathrm{2}.\mathrm{16174}\:\vee\:{x}=\mathrm{144}.\mathrm{410}\wedge{R}=\mathrm{6}.\mathrm{98799}; \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{case}\:\mathrm{the}\:\mathrm{center}\:\mathrm{is}\:\mathrm{shifted}\:\mathrm{by} \\ $$$$\begin{pmatrix}{.\mathrm{143930}}\\{.\mathrm{253156}}\end{pmatrix},\:\mathrm{in}\:\mathrm{the}\:\mathrm{second}\:\mathrm{case}\:\mathrm{by}\:\begin{pmatrix}{.\mathrm{835304}}\\{.\mathrm{854448}}\end{pmatrix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com