Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4862 by prakash jain last updated on 18/Mar/16

Solve for x  x=(√(.1+(√(.1+(√(.1+(√(.1+...))))))))

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}=\sqrt{.\mathrm{1}+\sqrt{.\mathrm{1}+\sqrt{.\mathrm{1}+\sqrt{.\mathrm{1}+...}}}} \\ $$

Answered by Yozzii last updated on 18/Mar/16

Let us look at the general case of       x=(√(a+(√(a+(√(a+(√(a+(√(a+...))))))))))  where a∈C. Assuming then that the  convergence of the value of x exists  we can perform the following algebraic  manipulation.  x^2 =a+(√(a+(√(a+(√(a+(√(a+...))))))))  ⇒x^2 =a+x  ⇒x^2 −x−a=0  (∗)  If x∈R⇒the discriminant D of (∗)  is non−negative.  ∴D≥0⇒(−1)^2 −4(1)(−a)≥0  1+4a≥0⇒a≥−0.25. Otherwise,x∉R if a<−0.25.  Then a∈R (for if a∉R, a≥−0.25 is senseless  in the law of trichotomy.)  In the given question, a=0.1>−0.25.  ⇒ x∈R and x≥0 by the taking of the  positive square−root of some   non−negative real number.  ∴ x=((1±(√(1+4a)))/2)⇒x=((1+(√(1+4a)))/2) or x=((1−(√(1+4a)))/2).  If a>0 and x≥0⇒x≠((1−(√(1+4a)))/2)  so that x=((1+(√(1+4a)))/2). a=0.1>0  ∴ x=((1+(√(1.4)))/2).  If −0.25≤a<0 then 0≤1+4a<1  1+(√(1+4a))>0 and 1−(√(1+4a))>0  ⇒x is arbitrarily one of the two  solutions found which means then  that x has no real value. So a necessary  and sufficient condition for a definitive  convergence of x∈R is that a≥0 .    If x∉R⇒1+4a<0⇒x=((1±i(√(−1−4a)))/2).  This similarly indicates that x is  arbitrary at ∞, so that no such x∉R  exists if a<−0.25.

$${Let}\:{us}\:{look}\:{at}\:{the}\:{general}\:{case}\:{of} \\ $$$$\:\:\:\:\:{x}=\sqrt{{a}+\sqrt{{a}+\sqrt{{a}+\sqrt{{a}+\sqrt{{a}+...}}}}} \\ $$$${where}\:{a}\in\mathbb{C}.\:{Assuming}\:{then}\:{that}\:{the} \\ $$$${convergence}\:{of}\:{the}\:{value}\:{of}\:{x}\:{exists} \\ $$$${we}\:{can}\:{perform}\:{the}\:{following}\:{algebraic} \\ $$$${manipulation}. \\ $$$${x}^{\mathrm{2}} ={a}+\sqrt{{a}+\sqrt{{a}+\sqrt{{a}+\sqrt{{a}+...}}}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} ={a}+{x} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}−{a}=\mathrm{0}\:\:\left(\ast\right) \\ $$$${If}\:{x}\in\mathbb{R}\Rightarrow{the}\:{discriminant}\:{D}\:{of}\:\left(\ast\right) \\ $$$${is}\:{non}−{negative}. \\ $$$$\therefore{D}\geqslant\mathrm{0}\Rightarrow\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(−{a}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{4}{a}\geqslant\mathrm{0}\Rightarrow{a}\geqslant−\mathrm{0}.\mathrm{25}.\:{Otherwise},{x}\notin\mathbb{R}\:{if}\:{a}<−\mathrm{0}.\mathrm{25}. \\ $$$${Then}\:{a}\in\mathbb{R}\:\left({for}\:{if}\:{a}\notin\mathbb{R},\:{a}\geqslant−\mathrm{0}.\mathrm{25}\:{is}\:{senseless}\right. \\ $$$$\left.{in}\:{the}\:{law}\:{of}\:{trichotomy}.\right) \\ $$$${In}\:{the}\:{given}\:{question},\:{a}=\mathrm{0}.\mathrm{1}>−\mathrm{0}.\mathrm{25}. \\ $$$$\Rightarrow\:{x}\in\mathbb{R}\:{and}\:{x}\geqslant\mathrm{0}\:{by}\:{the}\:{taking}\:{of}\:{the} \\ $$$${positive}\:{square}−{root}\:{of}\:{some}\: \\ $$$${non}−{negative}\:{real}\:{number}. \\ $$$$\therefore\:{x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}}\Rightarrow{x}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}}\:{or}\:{x}=\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}}. \\ $$$${If}\:{a}>\mathrm{0}\:{and}\:{x}\geqslant\mathrm{0}\Rightarrow{x}\neq\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}} \\ $$$${so}\:{that}\:{x}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}}.\:{a}=\mathrm{0}.\mathrm{1}>\mathrm{0} \\ $$$$\therefore\:{x}=\frac{\mathrm{1}+\sqrt{\mathrm{1}.\mathrm{4}}}{\mathrm{2}}. \\ $$$${If}\:−\mathrm{0}.\mathrm{25}\leqslant{a}<\mathrm{0}\:{then}\:\mathrm{0}\leqslant\mathrm{1}+\mathrm{4}{a}<\mathrm{1} \\ $$$$\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{a}}>\mathrm{0}\:{and}\:\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{4}{a}}>\mathrm{0} \\ $$$$\Rightarrow{x}\:{is}\:{arbitrarily}\:{one}\:{of}\:{the}\:{two} \\ $$$${solutions}\:{found}\:{which}\:{means}\:{then} \\ $$$${that}\:{x}\:{has}\:{no}\:{real}\:{value}.\:{So}\:{a}\:{necessary} \\ $$$${and}\:{sufficient}\:{condition}\:{for}\:{a}\:{definitive} \\ $$$${convergence}\:{of}\:{x}\in\mathbb{R}\:{is}\:{that}\:{a}\geqslant\mathrm{0}\:. \\ $$$$ \\ $$$${If}\:{x}\notin\mathbb{R}\Rightarrow\mathrm{1}+\mathrm{4}{a}<\mathrm{0}\Rightarrow{x}=\frac{\mathrm{1}\pm{i}\sqrt{−\mathrm{1}−\mathrm{4}{a}}}{\mathrm{2}}. \\ $$$${This}\:{similarly}\:{indicates}\:{that}\:{x}\:{is} \\ $$$${arbitrary}\:{at}\:\infty,\:{so}\:{that}\:{no}\:{such}\:{x}\notin\mathbb{R} \\ $$$${exists}\:{if}\:{a}<−\mathrm{0}.\mathrm{25}. \\ $$$$ \\ $$$$ \\ $$

Commented by Yozzii last updated on 18/Mar/16

For a>0, x=((1+(√(1+4a)))/2) is an injective  function x of a.

$${For}\:{a}>\mathrm{0},\:{x}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}}\:{is}\:{an}\:{injective} \\ $$$${function}\:{x}\:{of}\:{a}.\: \\ $$$$ \\ $$

Commented by Yozzii last updated on 18/Mar/16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com