Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 4962 by 123456 last updated on 27/Mar/16

is possible to proof that  f(x)=e^(cx)   obey  f(x+y)=f(x)f(y)  using  e^x =Σ_(n=0) ^(+∞) (x^n /(n!))  ?

$$\mathrm{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{proof}\:\mathrm{that} \\ $$$${f}\left({x}\right)={e}^{{cx}} \\ $$$$\mathrm{obey} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right) \\ $$$$\mathrm{using} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\ $$$$? \\ $$

Commented by 123456 last updated on 27/Mar/16

e^(x+y) =Σ_(n=0) ^(+∞) (((x+y)^n )/(n!))  =Σ_(n=0) ^(+∞) (1/(n!))Σ_(m=0) ^n  ((n),(m) )x^m y^(n−m)   =Σ_(n=0) ^(+∞) (1/(n!))Σ_(m=0) ^n ((n!)/(m!(n−m)!))x^m y^(n−m)   =Σ_(n=0) ^(+∞) Σ_(m=0) ^n (1/(m!(n−m)!))x^m y^(n−m)

$${e}^{{x}+{y}} =\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\left({x}+{y}\right)^{{n}} }{{n}!} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\underset{{m}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{m}}\end{pmatrix}{x}^{{m}} {y}^{{n}−{m}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\underset{{m}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{{m}!\left({n}−{m}\right)!}{x}^{{m}} {y}^{{n}−{m}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\underset{{m}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{m}!\left({n}−{m}\right)!}{x}^{{m}} {y}^{{n}−{m}} \\ $$

Commented by prakash jain last updated on 08/Jan/17

e^(x+y) =Σ_(i=0) ^∞ (((x+y)^i )/(i!))  (x+y)^m = Σ_(i=0) ^m ^m C_i x^i y^(m−i)   coefficient of x^k  in e^(x+y)   Σ_(m=k) ^∞  (1/(m!))∙((m!)/(k!(m−k)!)) y^(m−k) =(1/(k!))Σ_(m=k) ^∞ (y^(m−k) /((m−k)!))  =(1/(k!))Σ_(m=0) ^∞  (y^m /(m!)) = (e^y /(k!))  so e^(x+y) =Σ_(k=0) ^∞ (e^y /(k!))x^k =e^y e^x

$${e}^{{x}+{y}} =\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({x}+{y}\right)^{{i}} }{{i}!} \\ $$$$\left({x}+{y}\right)^{{m}} =\:\underset{{i}=\mathrm{0}} {\overset{{m}} {\sum}}\:^{{m}} {C}_{{i}} {x}^{{i}} {y}^{{m}−{i}} \\ $$$${coefficient}\:{of}\:{x}^{{k}} \:{in}\:{e}^{{x}+{y}} \\ $$$$\underset{{m}={k}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{m}!}\centerdot\frac{{m}!}{{k}!\left({m}−{k}\right)!}\:{y}^{{m}−{k}} =\frac{\mathrm{1}}{{k}!}\underset{{m}={k}} {\overset{\infty} {\sum}}\frac{{y}^{{m}−{k}} }{\left({m}−{k}\right)!} \\ $$$$=\frac{\mathrm{1}}{{k}!}\underset{{m}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{y}^{{m}} }{{m}!}\:=\:\frac{{e}^{{y}} }{{k}!} \\ $$$$\mathrm{so}\:{e}^{{x}+{y}} =\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{e}^{{y}} }{{k}!}{x}^{{k}} ={e}^{{y}} {e}^{{x}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com