Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49939 by turbo msup by abdo last updated on 12/Dec/18

find  ∫_0 ^(π/2) sinx ln(1+x) dx

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sinx}\:{ln}\left(\mathrm{1}+{x}\right)\:{dx} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18

∫_0 ^(π/2) sinxln(1+x)dx≈(0.2×0.2)×nos smallest square

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sinxln}\left(\mathrm{1}+{x}\right){dx}\approx\left(\mathrm{0}.\mathrm{2}×\mathrm{0}.\mathrm{2}\right)×{nos}\:{smallest}\:{square} \\ $$

Commented by mathmax by abdo last updated on 03/Nov/19

let determine a approximate value let A=∫_0 ^(π/2)  sinx ln(1+x)dx  by parts A =[−cosx ln(1+x)]_0 ^(π/2)  −∫_0 ^(π/2) (−cosx)(dx/(1+x))  =∫_0 ^(π/2)  ((cosx)/(1+x))dx   we have  cosx =Σ_(n=0) ^∞  (((−1)^n x^(2n) )/((2n)!))  =1−(x^2 /2) +(x^2 /(24))− ⇒1−(x^2 /2)≤cosx ≤1 ⇒((1−(x^2 /2))/(x+1))≤((cosx)/(x+1))≤(1/(x+1)) ⇒  ∫_0 ^(π/2)  ((2−x^2 )/(2(x+1)))dx ≤∫_0 ^(π/2)  ((cosx)/(x+1))dx ≤∫_0 ^1  (dx/(x+1))  ∫_0 ^1  (dx/(x+1)) =[ln(x+1)]_0 ^1 =ln(2)  ∫_0 ^(π/2)   ((2−x^2 )/(2(x+1)))dx =_(x+1=t)    ∫_1 ^(1+(π/2))   ((2−(t−1)^2 )/(2t))dt  =∫_1 ^(1+(π/2))   ((2−t^2 +2t−1)/t)dt =∫_1 ^(1+(π/2))   ((1−t^2 +2t)/t)dt  =∫_1 ^(1+(π/2))  (dt/t) −∫_1 ^(1+(π/2)) tdt +π =ln(1+(π/2))−[(t^2 /2)]_1 ^(1+(π/2))  +π  =ln(1+(π/2))−(1/2)((1+(π/2))^2 −1)+π ⇒  ln(1+(π/2))−(1/2)(π+(π^2 /4))+π≤A≤ln(2) ⇒  ln(1+(π/2))+(π/2)−(π^2 /8) ≤A ≤ln(2)  and we can take  v_0 =(1/2){ ln(1+(π/2))+(π/2)−(π^2 /8) +ln(2)} as aporoximate value for A

$${let}\:{determine}\:{a}\:{approximate}\:{value}\:{let}\:{A}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sinx}\:{ln}\left(\mathrm{1}+{x}\right){dx} \\ $$$${by}\:{parts}\:{A}\:=\left[−{cosx}\:{ln}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(−{cosx}\right)\frac{{dx}}{\mathrm{1}+{x}} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cosx}}{\mathrm{1}+{x}}{dx}\:\:\:{we}\:{have}\:\:{cosx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$$$=\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{x}^{\mathrm{2}} }{\mathrm{24}}−\:\Rightarrow\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\leqslant{cosx}\:\leqslant\mathrm{1}\:\Rightarrow\frac{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}{{x}+\mathrm{1}}\leqslant\frac{{cosx}}{{x}+\mathrm{1}}\leqslant\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\mathrm{2}\left({x}+\mathrm{1}\right)}{dx}\:\leqslant\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cosx}}{{x}+\mathrm{1}}{dx}\:\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{{x}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{{x}+\mathrm{1}}\:=\left[{ln}\left({x}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} ={ln}\left(\mathrm{2}\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\mathrm{2}\left({x}+\mathrm{1}\right)}{dx}\:=_{{x}+\mathrm{1}={t}} \:\:\:\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{2}−\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}{t}}{dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{2}−{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}}{{t}}{dt}\:=\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{1}−{t}^{\mathrm{2}} +\mathrm{2}{t}}{{t}}{dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \:\frac{{dt}}{{t}}\:−\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} {tdt}\:+\pi\:={ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)−\left[\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \:+\pi \\ $$$$={ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{1}\right)+\pi\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\pi+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right)+\pi\leqslant{A}\leqslant{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)+\frac{\pi}{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\leqslant{A}\:\leqslant{ln}\left(\mathrm{2}\right)\:\:{and}\:{we}\:{can}\:{take} \\ $$$${v}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)+\frac{\pi}{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:+{ln}\left(\mathrm{2}\right)\right\}\:{as}\:{aporoximate}\:{value}\:{for}\:{A} \\ $$

Commented by mathmax by abdo last updated on 03/Nov/19

error of typo at line  8    ...=∫_1 ^(1+(π/2)) ((2−t^2 +2t−1)/(2t))dt =∫_1 ^(1+(π/2)) ((1−t^2  +2t)/(2t))dt  =∫_1 ^(1+(π/2))   (dt/(2t))−∫_1 ^(1+(π/2))  (t/2)dt +∫_1 ^(1+(π/2))  dt  =(1/2)ln(1+(π/2))−(1/4){ (1+(π/2))^2 −1}+(π/2) =.....

$${error}\:{of}\:{typo}\:{at}\:{line}\:\:\mathrm{8}\:\: \\ $$$$...=\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}−{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}}{\mathrm{2}{t}}{dt}\:=\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}−{t}^{\mathrm{2}} \:+\mathrm{2}{t}}{\mathrm{2}{t}}{dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{2}{t}}−\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \:\frac{{t}}{\mathrm{2}}{dt}\:+\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\pi}{\mathrm{2}}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{4}}\left\{\:\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{1}\right\}+\frac{\pi}{\mathrm{2}}\:=..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com