Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50406 by Abdo msup. last updated on 16/Dec/18

1) decompose at simple elements  U_n = ((n x^(n−1) )/(x^n −1))  2) calculste  ∫_0 ^(2π)    (dt/(x−e^(it) ))

$$\left.\mathrm{1}\right)\:{decompose}\:{at}\:{simple}\:{elements} \\ $$$${U}_{{n}} =\:\frac{{n}\:{x}^{{n}−\mathrm{1}} }{{x}^{{n}} −\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculste}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{x}−{e}^{{it}} } \\ $$

Commented by Abdo msup. last updated on 25/Dec/18

let p(x)=x^n −1  the roots of p(x) are z_k =e^(i((2kπ)/n))   with k∈[[0,n−1]]  but U_n =Σ_(k=0) ^(n−1)   (λ_k /(x−z_k ))  λ_k =((nz_k ^(n−1) )/(p^′ (z_k ))) =(n/z_k ) (1/(n z_k ^(n−1) )) =1 ⇒ U_n =Σ_(k=0) ^(n−1)   (1/(x−z_k ))  =Σ_(k=0) ^(n−1)    (1/(x−e^(i((2kπ)/n)) ))

$${let}\:{p}\left({x}\right)={x}^{{n}} −\mathrm{1}\:\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{are}\:{z}_{{k}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \\ $$$${with}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:\:{but}\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\lambda_{{k}} }{{x}−{z}_{{k}} } \\ $$$$\lambda_{{k}} =\frac{{nz}_{{k}} ^{{n}−\mathrm{1}} }{{p}^{'} \left({z}_{{k}} \right)}\:=\frac{{n}}{{z}_{{k}} }\:\frac{\mathrm{1}}{{n}\:{z}_{{k}} ^{{n}−\mathrm{1}} }\:=\mathrm{1}\:\Rightarrow\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{{x}−{z}_{{k}} } \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\frac{\mathrm{1}}{{x}−{e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} } \\ $$

Commented by Abdo msup. last updated on 25/Dec/18

2) changement e^(it) =z give  ∫_0 ^(2π)    (dt/(x−e^(it) )) =∫_(∣z∣=1)     (1/(x−z)) (dz/(iz))  =∫_(∣z∣=1)   ((−idz)/(xz −z^2 )) =∫_(∣z∣=1)    ((idz)/(z^2 −xz))  let  ϕ(z) =(i/(z^2 −xz)) =(i/(z(z−x))) so the polesx of ϕ are 0 and  x   if ∣x∣<1  ∫_(∣z∣=1)  ϕ(z)dz =2iπ(Res(ϕ,0)+Res(ϕ,x)}  Res(ϕ,0) =lim_(z→0) zϕ(z)=−(i/x)  Res(ϕ,x) =lim_(z→x) (z−x)ϕ(z)=(i/x)⇒  ∫_(∣z∣=1)  ϕ(z)dz =0  if ∣x∣>1   ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,0)  =2iπ(((−i)/x)) =((2π)/x)  (we suppose x≠0)  if x=0  ∫_0 ^(2π)    (dt/(x−e^(it) )) =−∫_0 ^(2π)  e^(−it) dt  =−[−(1/i) e^(−it) ]_0 ^(2π)  =(1/i)(1−1)=0

$$\left.\mathrm{2}\right)\:{changement}\:{e}^{{it}} ={z}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{x}−{e}^{{it}} }\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\frac{\mathrm{1}}{{x}−{z}}\:\frac{{dz}}{{iz}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{−{idz}}{{xz}\:−{z}^{\mathrm{2}} }\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{{idz}}{{z}^{\mathrm{2}} −{xz}}\:\:{let} \\ $$$$\varphi\left({z}\right)\:=\frac{{i}}{{z}^{\mathrm{2}} −{xz}}\:=\frac{{i}}{{z}\left({z}−{x}\right)}\:{so}\:{the}\:{polesx}\:{of}\:\varphi\:{are}\:\mathrm{0}\:{and} \\ $$$${x}\:\:\:{if}\:\mid{x}\mid<\mathrm{1}\:\:\int_{\mid{z}\mid=\mathrm{1}} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left({Res}\left(\varphi,\mathrm{0}\right)+{Res}\left(\varphi,{x}\right)\right\} \\ $$$${Res}\left(\varphi,\mathrm{0}\right)\:={lim}_{{z}\rightarrow\mathrm{0}} {z}\varphi\left({z}\right)=−\frac{{i}}{{x}} \\ $$$${Res}\left(\varphi,{x}\right)\:={lim}_{{z}\rightarrow{x}} \left({z}−{x}\right)\varphi\left({z}\right)=\frac{{i}}{{x}}\Rightarrow \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \:\varphi\left({z}\right){dz}\:=\mathrm{0} \\ $$$${if}\:\mid{x}\mid>\mathrm{1}\:\:\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\mathrm{0}\right) \\ $$$$=\mathrm{2}{i}\pi\left(\frac{−{i}}{{x}}\right)\:=\frac{\mathrm{2}\pi}{{x}}\:\:\left({we}\:{suppose}\:{x}\neq\mathrm{0}\right) \\ $$$${if}\:{x}=\mathrm{0}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{x}−{e}^{{it}} }\:=−\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{e}^{−{it}} {dt} \\ $$$$=−\left[−\frac{\mathrm{1}}{{i}}\:{e}^{−{it}} \right]_{\mathrm{0}} ^{\mathrm{2}\pi} \:=\frac{\mathrm{1}}{{i}}\left(\mathrm{1}−\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com