Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 50561 by ajfour last updated on 17/Dec/18

Commented by ajfour last updated on 17/Dec/18

Find radius r of dashed circles  (all equal), given n and R.

$${Find}\:{radius}\:{r}\:{of}\:{dashed}\:{circles} \\ $$$$\left({all}\:{equal}\right),\:{given}\:\boldsymbol{{n}}\:{and}\:\boldsymbol{{R}}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Dec/18

joining the centres of n circles make a[circle  of radius =R+r  join each centre of  circle of radius r with  centre of circle of radius R  (n)θ=2π  θ=((2π)/n)  cosθ=(((R+r)^2 +(R+r)^2 −(2r)^2 )/(2(R+r)(R+r)))  (2r)^2 =2(R+r)^2 −2(R+r)^2 cosθ  (2r)^2 =2(R+r)^2 [1−cosθ]  (2r)^2 =4(R+r)^2 sin^2 ((θ/2))  2r=2(R+r)sin((θ/2))    r=(R+r)sin((θ/2))  r−rsin((θ/2))=Rsin((θ/2))  r=((Rsin((θ/2)))/(1−sin((θ/2))))=((Rsin((π/n)))/(1−sin((π/n))))  pls check..

$${joining}\:{the}\:{centres}\:{of}\:{n}\:{circles}\:{make}\:{a}\left[{circle}\right. \\ $$$${of}\:{radius}\:={R}+{r} \\ $$$${join}\:{each}\:{centre}\:{of}\:\:{circle}\:{of}\:{radius}\:{r}\:{with} \\ $$$${centre}\:{of}\:{circle}\:{of}\:{radius}\:{R} \\ $$$$\left({n}\right)\theta=\mathrm{2}\pi \\ $$$$\theta=\frac{\mathrm{2}\pi}{{n}} \\ $$$${cos}\theta=\frac{\left({R}+{r}\right)^{\mathrm{2}} +\left({R}+{r}\right)^{\mathrm{2}} −\left(\mathrm{2}{r}\right)^{\mathrm{2}} }{\mathrm{2}\left({R}+{r}\right)\left({R}+{r}\right)} \\ $$$$\left(\mathrm{2}{r}\right)^{\mathrm{2}} =\mathrm{2}\left({R}+{r}\right)^{\mathrm{2}} −\mathrm{2}\left({R}+{r}\right)^{\mathrm{2}} {cos}\theta \\ $$$$\left(\mathrm{2}{r}\right)^{\mathrm{2}} =\mathrm{2}\left({R}+{r}\right)^{\mathrm{2}} \left[\mathrm{1}−{cos}\theta\right] \\ $$$$\left(\mathrm{2}{r}\right)^{\mathrm{2}} =\mathrm{4}\left({R}+{r}\right)^{\mathrm{2}} {sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right) \\ $$$$\mathrm{2}{r}=\mathrm{2}\left({R}+{r}\right){sin}\left(\frac{\theta}{\mathrm{2}}\right) \\ $$$$ \\ $$$${r}=\left({R}+{r}\right){sin}\left(\frac{\theta}{\mathrm{2}}\right) \\ $$$${r}−{rsin}\left(\frac{\theta}{\mathrm{2}}\right)={Rsin}\left(\frac{\theta}{\mathrm{2}}\right) \\ $$$${r}=\frac{{Rsin}\left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{1}−{sin}\left(\frac{\theta}{\mathrm{2}}\right)}=\frac{{Rsin}\left(\frac{\pi}{{n}}\right)}{\mathrm{1}−{sin}\left(\frac{\pi}{{n}}\right)} \\ $$$${pls}\:{check}.. \\ $$

Commented by ajfour last updated on 18/Dec/18

Thanks Tanmay Sir.

$${Thanks}\:{Tanmay}\:{Sir}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Dec/18

thank you sir...ldt me rectify..

$${thank}\:{you}\:{sir}...{ldt}\:{me}\:{rectify}.. \\ $$

Answered by mr W last updated on 17/Dec/18

let λ=(r/R)  sin θ=(r/(r+R))=(λ/(1+λ))  ⇒λ=((sin θ)/(1−sin θ))=(1/(1−sin θ))−1  2nθ=2π  ⇒θ=(π/n)  ⇒λ=(1/(1−sin (π/n)))−1  ============  λ=(1/(1−sin (π/n)))−1≤1  sin (π/n)≤(1/2)  (π/n)≤(π/6)  ⇒n≥6

$${let}\:\lambda=\frac{{r}}{{R}} \\ $$$$\mathrm{sin}\:\theta=\frac{{r}}{{r}+{R}}=\frac{\lambda}{\mathrm{1}+\lambda} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{sin}\:\theta}{\mathrm{1}−\mathrm{sin}\:\theta}=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\theta}−\mathrm{1} \\ $$$$\mathrm{2}{n}\theta=\mathrm{2}\pi \\ $$$$\Rightarrow\theta=\frac{\pi}{{n}} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\frac{\pi}{{n}}}−\mathrm{1} \\ $$$$============ \\ $$$$\lambda=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\frac{\pi}{{n}}}−\mathrm{1}\leqslant\mathrm{1} \\ $$$$\mathrm{sin}\:\frac{\pi}{{n}}\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\pi}{{n}}\leqslant\frac{\pi}{\mathrm{6}} \\ $$$$\Rightarrow{n}\geqslant\mathrm{6} \\ $$

Commented by mr W last updated on 17/Dec/18

I have noticed it, but I can not solve it.

$${I}\:{have}\:{noticed}\:{it},\:{but}\:{I}\:{can}\:{not}\:{solve}\:{it}. \\ $$

Commented by ajfour last updated on 17/Dec/18

Good Sir, Thanks.  how about radius of next layer  circles ?!

$${Good}\:{Sir},\:{Thanks}. \\ $$$${how}\:{about}\:{radius}\:{of}\:{next}\:{layer} \\ $$$${circles}\:?! \\ $$

Commented by mr W last updated on 17/Dec/18

n=5: r_5 =R((1/(1−sin (π/5)))−1)=(((√(10+10(√5)))/5)−1)R  n=4: r_4 =R((1/(1−sin (π/4)))−1)=(1+2(√2))R  n=3: r_3 =R((1/(1−sin (π/3)))−1)=(3+2(√3))R

$${n}=\mathrm{5}:\:{r}_{\mathrm{5}} ={R}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\frac{\pi}{\mathrm{5}}}−\mathrm{1}\right)=\left(\frac{\sqrt{\mathrm{10}+\mathrm{10}\sqrt{\mathrm{5}}}}{\mathrm{5}}−\mathrm{1}\right){R} \\ $$$${n}=\mathrm{4}:\:{r}_{\mathrm{4}} ={R}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\frac{\pi}{\mathrm{4}}}−\mathrm{1}\right)=\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right){R} \\ $$$${n}=\mathrm{3}:\:{r}_{\mathrm{3}} ={R}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\frac{\pi}{\mathrm{3}}}−\mathrm{1}\right)=\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{3}}\right){R} \\ $$

Commented by ajfour last updated on 17/Dec/18

next LAYER  Circles, Sir ?

$${next}\:{LAYER}\:\:{Circles},\:{Sir}\:? \\ $$

Commented by mr W last updated on 18/Dec/18

let s=radius of circles from next layer  (√((s+r)^2 −s^2 ))+R+r=(s/(tan θ))=(s/(tan (π/n)))  (√(r(2s+r)))=(s/(tan (π/n)))−R−r  (s^2 /(tan^2  (π/n)))−2[(((R+r))/(tan (π/n)))+r]s+R(R+2r)=0  s=(((((R+r))/(tan (π/n)))+r+(√([(((R+r))/(tan (π/n)))+r]^2 −((R(R+2r))/(tan^2  (π/n))))))/(1/(tan^2  (π/n))))  ⇒s=tan (π/n) {R+(1+tan (π/n))r+(√([R+(1+tan (π/n))r]^2 −R(R+2r)))}

$${let}\:{s}={radius}\:{of}\:{circles}\:{from}\:{next}\:{layer} \\ $$$$\sqrt{\left({s}+{r}\right)^{\mathrm{2}} −{s}^{\mathrm{2}} }+{R}+{r}=\frac{{s}}{\mathrm{tan}\:\theta}=\frac{{s}}{\mathrm{tan}\:\frac{\pi}{{n}}} \\ $$$$\sqrt{{r}\left(\mathrm{2}{s}+{r}\right)}=\frac{{s}}{\mathrm{tan}\:\frac{\pi}{{n}}}−{R}−{r} \\ $$$$\frac{{s}^{\mathrm{2}} }{\mathrm{tan}^{\mathrm{2}} \:\frac{\pi}{{n}}}−\mathrm{2}\left[\frac{\left({R}+{r}\right)}{\mathrm{tan}\:\frac{\pi}{{n}}}+{r}\right]{s}+{R}\left({R}+\mathrm{2}{r}\right)=\mathrm{0} \\ $$$${s}=\frac{\frac{\left({R}+{r}\right)}{\mathrm{tan}\:\frac{\pi}{{n}}}+{r}+\sqrt{\left[\frac{\left({R}+{r}\right)}{\mathrm{tan}\:\frac{\pi}{{n}}}+{r}\right]^{\mathrm{2}} −\frac{{R}\left({R}+\mathrm{2}{r}\right)}{\mathrm{tan}^{\mathrm{2}} \:\frac{\pi}{{n}}}}}{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\frac{\pi}{{n}}}} \\ $$$$\Rightarrow{s}=\mathrm{tan}\:\frac{\pi}{{n}}\:\left\{{R}+\left(\mathrm{1}+\mathrm{tan}\:\frac{\pi}{{n}}\right){r}+\sqrt{\left[{R}+\left(\mathrm{1}+\mathrm{tan}\:\frac{\pi}{{n}}\right){r}\right]^{\mathrm{2}} −{R}\left({R}+\mathrm{2}{r}\right)}\right\} \\ $$

Commented by ajfour last updated on 17/Dec/18

Heights! so quick sir, some typos,  i guess..

$${Heights}!\:{so}\:{quick}\:{sir},\:{some}\:{typos}, \\ $$$${i}\:{guess}.. \\ $$

Commented by ajfour last updated on 17/Dec/18

Commented by mr W last updated on 17/Dec/18

no! not such an integer n exists.  n≈8.84

$${no}!\:{not}\:{such}\:{an}\:{integer}\:{n}\:{exists}. \\ $$$${n}\approx\mathrm{8}.\mathrm{84} \\ $$

Commented by ajfour last updated on 17/Dec/18

thanks sir.

$${thanks}\:{sir}. \\ $$

Answered by Smail last updated on 18/Dec/18

θ=((2π)/n)  sin((θ/2))=(r/(R+r))⇔r(1−sin((θ/2))=Rsin((θ/2))  r=((Rsin((θ/2)))/(1−sin((θ/2))))=(R/(csc((θ/2))−1))  r=(R/(csc((π/n))−1))  When n=6  ,  r should equal  R  r_6 =(R/(csc((π/6))−1))=(R/(2−1))=R

$$\theta=\frac{\mathrm{2}\pi}{{n}} \\ $$$${sin}\left(\frac{\theta}{\mathrm{2}}\right)=\frac{{r}}{{R}+{r}}\Leftrightarrow{r}\left(\mathrm{1}−{sin}\left(\frac{\theta}{\mathrm{2}}\right)={Rsin}\left(\frac{\theta}{\mathrm{2}}\right)\right. \\ $$$${r}=\frac{{Rsin}\left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{1}−{sin}\left(\frac{\theta}{\mathrm{2}}\right)}=\frac{{R}}{{csc}\left(\frac{\theta}{\mathrm{2}}\right)−\mathrm{1}} \\ $$$${r}=\frac{{R}}{{csc}\left(\frac{\pi}{{n}}\right)−\mathrm{1}} \\ $$$${When}\:{n}=\mathrm{6}\:\:,\:\:{r}\:{should}\:{equal}\:\:{R} \\ $$$${r}_{\mathrm{6}} =\frac{{R}}{{csc}\left(\frac{\pi}{\mathrm{6}}\right)−\mathrm{1}}=\frac{{R}}{\mathrm{2}−\mathrm{1}}={R} \\ $$

Commented by Smail last updated on 18/Dec/18

Commented by Smail last updated on 18/Dec/18

Commented by Smail last updated on 18/Dec/18

n=6  so r=R

$${n}=\mathrm{6}\:\:{so}\:{r}={R} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com