Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 5144 by Yozzii last updated on 19/Apr/16

Let n,j,q∈(Z^+ −{1}). Are there   triples (n,j,q) such that the following  conditions are satisfied altogether?  (i) n=j^q       (ii)n^2 =j^2 +q^2   −−−−−−−−−−−−−−−−−−−−−−  Suppose then that condition (ii) above  is replaced by the following condition:    (iii) n^2 =rj^2 +q^2  where r∈(Z−{0,1})    What solutions (n,j,q) exist in this case?

$${Let}\:{n},{j},{q}\in\left(\mathbb{Z}^{+} −\left\{\mathrm{1}\right\}\right).\:{Are}\:{there}\: \\ $$$${triples}\:\left({n},{j},{q}\right)\:{such}\:{that}\:{the}\:{following} \\ $$$${conditions}\:{are}\:{satisfied}\:{altogether}? \\ $$$$\left({i}\right)\:{n}={j}^{{q}} \:\:\:\: \\ $$$$\left({ii}\right){n}^{\mathrm{2}} ={j}^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$$−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Suppose}\:{then}\:{that}\:{condition}\:\left({ii}\right)\:{above} \\ $$$${is}\:{replaced}\:{by}\:{the}\:{following}\:{condition}: \\ $$$$ \\ $$$$\left({iii}\right)\:{n}^{\mathrm{2}} ={rj}^{\mathrm{2}} +{q}^{\mathrm{2}} \:{where}\:{r}\in\left(\mathbb{Z}−\left\{\mathrm{0},\mathrm{1}\right\}\right) \\ $$$$ \\ $$$${What}\:{solutions}\:\left({n},{j},{q}\right)\:{exist}\:{in}\:{this}\:{case}? \\ $$$$ \\ $$

Commented by prakash jain last updated on 19/Apr/16

Let us n is even  n=2a  case a: j and q odd  4a^2 =(2b+1)^2 +(2c+1)^2 =4(b^2 +c^2 +b+c)+2  impossible  so both j and q must be even.  continuing the same argument   if n=2^k a (a is odd) (k≥1)  then q=2^k b, j=2^k c  2^k a=(2^k c)^(2kb)   2^k a=(2^k )^(2kb) c^(2kb)   a=(2^k )^(2kb−1) c^(2kb)   impossible since a is odd number  so no even solutions for n for case (i)  continue for cases where n is odd

$$\mathrm{Let}\:\mathrm{us}\:{n}\:\mathrm{is}\:\mathrm{even} \\ $$$${n}=\mathrm{2}{a} \\ $$$${case}\:{a}:\:{j}\:{and}\:{q}\:{odd} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} =\left(\mathrm{2}{b}+\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}{c}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{b}+{c}\right)+\mathrm{2} \\ $$$${impossible} \\ $$$${so}\:{both}\:{j}\:{and}\:{q}\:{must}\:{be}\:{even}. \\ $$$${continuing}\:{the}\:{same}\:{argument}\: \\ $$$${if}\:{n}=\mathrm{2}^{{k}} {a}\:\left({a}\:{is}\:{odd}\right)\:\left({k}\geqslant\mathrm{1}\right) \\ $$$${then}\:{q}=\mathrm{2}^{{k}} {b},\:{j}=\mathrm{2}^{{k}} {c} \\ $$$$\mathrm{2}^{{k}} {a}=\left(\mathrm{2}^{{k}} {c}\right)^{\mathrm{2}{kb}} \\ $$$$\mathrm{2}^{{k}} {a}=\left(\mathrm{2}^{{k}} \right)^{\mathrm{2}{kb}} {c}^{\mathrm{2}{kb}} \\ $$$${a}=\left(\mathrm{2}^{{k}} \right)^{\mathrm{2}{kb}−\mathrm{1}} {c}^{\mathrm{2}{kb}} \\ $$$${impossible}\:{since}\:{a}\:{is}\:{odd}\:{number} \\ $$$${so}\:{no}\:{even}\:{solutions}\:{for}\:{n}\:{for}\:{case}\:\left({i}\right) \\ $$$${continue}\:{for}\:{cases}\:{where}\:{n}\:{is}\:{odd} \\ $$

Commented by prakash jain last updated on 20/Apr/16

So no solution for n is possible for which  if n is odd j must be odd and q even  since n=j^q   also  n^2 =j^2 +q^2   j^(2q) =j^2 +q^2   j^2 (j^(2q−2) −1)=q^2   ⇒ ((q/j))^2 =j^(2q−2) −1  since j is odd and q even the above relation  is impossible.  correction: the above argument that q evrn  and j odd is not correct.  So the above  relation may be possible.  So no solution for n is possible for which  satisfied both (i) and (ii).

$$\mathrm{So}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{n}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{for}\:\mathrm{which} \\ $$$${if}\:{n}\:{is}\:{odd}\:{j}\:{must}\:{be}\:{odd}\:{and}\:{q}\:{even} \\ $$$${since}\:{n}={j}^{{q}} \\ $$$${also} \\ $$$${n}^{\mathrm{2}} ={j}^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$${j}^{\mathrm{2}{q}} ={j}^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$${j}^{\mathrm{2}} \left({j}^{\mathrm{2}{q}−\mathrm{2}} −\mathrm{1}\right)={q}^{\mathrm{2}} \\ $$$$\Rightarrow\:\left(\frac{{q}}{{j}}\right)^{\mathrm{2}} ={j}^{\mathrm{2}{q}−\mathrm{2}} −\mathrm{1} \\ $$$${since}\:{j}\:{is}\:{odd}\:{and}\:{q}\:{even}\:{the}\:{above}\:{relation} \\ $$$${is}\:{impossible}. \\ $$$${correction}:\:\mathrm{the}\:\mathrm{above}\:\mathrm{argument}\:\mathrm{that}\:{q}\:{evrn} \\ $$$${and}\:{j}\:{odd}\:{is}\:{not}\:{correct}.\:\:\mathrm{So}\:\mathrm{the}\:\mathrm{above} \\ $$$$\mathrm{relation}\:\mathrm{may}\:\mathrm{be}\:\mathrm{possible}. \\ $$$$\mathrm{So}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{n}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{for}\:\mathrm{which} \\ $$$$\mathrm{satisfied}\:\mathrm{both}\:\left({i}\right)\:{and}\:\left({ii}\right). \\ $$

Commented by prakash jain last updated on 19/Apr/16

for condition (iii) do you mean r,n,j,q can  take −ve values as well.

$${for}\:{condition}\:\left({iii}\right)\:{do}\:{you}\:{mean}\:{r},{n},{j},{q}\:{can} \\ $$$${take}\:−{ve}\:{values}\:{as}\:{well}. \\ $$

Commented by Yozzii last updated on 19/Apr/16

Yes, but only can r be negative  (or I originally posted for r to possibly  be negative).

$${Yes},\:{but}\:{only}\:{can}\:{r}\:{be}\:{negative} \\ $$$$\left({or}\:{I}\:{originally}\:{posted}\:{for}\:{r}\:{to}\:{possibly}\right. \\ $$$$\left.{be}\:{negative}\right). \\ $$

Commented by prakash jain last updated on 19/Apr/16

j=2^b   n=2^(bq)   r=((n^2 −q^2 )/j^2 )=((2^(bq) −q^2 )/2^(2b) )  choose q=2^b ∙k  r will be an integer  ex.  j=2^2 =4  q=2^2 ∙k say=2^2 ∙3=12  n=4^(12)   r=((4^(24) −12^2 )/4^2 )=integer  So infinite solution can be found.  Given any j we can always choose q such that  r is an integer.  n^2 >q^2  so r will always be +ve.

$${j}=\mathrm{2}^{{b}} \\ $$$${n}=\mathrm{2}^{{bq}} \\ $$$${r}=\frac{{n}^{\mathrm{2}} −{q}^{\mathrm{2}} }{{j}^{\mathrm{2}} }=\frac{\mathrm{2}^{{bq}} −{q}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}{b}} } \\ $$$$\mathrm{choose}\:{q}=\mathrm{2}^{{b}} \centerdot{k} \\ $$$${r}\:{will}\:{be}\:{an}\:{integer} \\ $$$${ex}. \\ $$$${j}=\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$${q}=\mathrm{2}^{\mathrm{2}} \centerdot{k}\:{say}=\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}=\mathrm{12} \\ $$$${n}=\mathrm{4}^{\mathrm{12}} \\ $$$${r}=\frac{\mathrm{4}^{\mathrm{24}} −\mathrm{12}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} }={integer} \\ $$$$\mathrm{So}\:\mathrm{infinite}\:\mathrm{solution}\:\mathrm{can}\:\mathrm{be}\:\mathrm{found}. \\ $$$$\mathrm{Given}\:\mathrm{any}\:{j}\:\mathrm{we}\:\mathrm{can}\:\mathrm{always}\:\mathrm{choose}\:{q}\:\mathrm{such}\:\mathrm{that} \\ $$$${r}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}. \\ $$$${n}^{\mathrm{2}} >{q}^{\mathrm{2}} \:\mathrm{so}\:{r}\:\mathrm{will}\:\mathrm{always}\:\mathrm{be}\:+\mathrm{ve}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com