Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 5159 by 1771727373 last updated on 24/Apr/16

a+24((a−3)/(b^2 +a))=2a−b^(2 )   a×b^2 =20    would you solve this?

$${a}+\mathrm{24}\frac{{a}−\mathrm{3}}{{b}^{\mathrm{2}} +{a}}=\mathrm{2}{a}−{b}^{\mathrm{2}\:} \\ $$$${a}×{b}^{\mathrm{2}} =\mathrm{20} \\ $$$$ \\ $$$${would}\:{you}\:{solve}\:{this}? \\ $$

Answered by FilupSmith last updated on 24/Apr/16

ab^2 =20 ⇒ b^2 =20a    ∴ a+24((a−3)/(b^2 +a))=2a−b^(2 )   ⇒  a+24((a−3)/(((20)/a)+a))=2a−((20)/a)  a+24((a−3)/((20+a^2 )/a))=((2a^2 −20)/a)  a+24((a^2 −3a)/(20+a^2 ))=((2a^2 −20)/a)  a^2 +24a(a^2 −3a)=(2a^2 −20)(20+a^2 )  a^2 +24a^3 −72a=40a^2 +2a^4 −20^2 −20a^2   −19a^2 +24a^3 −2a^4 −72a+400=0  19a^2 −24a^3 +2a^4 +72a−400=0  2a^4 −24a^3 +19a^2 +72a−400=0  continue

$${ab}^{\mathrm{2}} =\mathrm{20}\:\Rightarrow\:{b}^{\mathrm{2}} =\mathrm{20}{a} \\ $$$$ \\ $$$$\therefore\:{a}+\mathrm{24}\frac{{a}−\mathrm{3}}{{b}^{\mathrm{2}} +{a}}=\mathrm{2}{a}−{b}^{\mathrm{2}\:} \:\:\Rightarrow\:\:{a}+\mathrm{24}\frac{{a}−\mathrm{3}}{\frac{\mathrm{20}}{{a}}+{a}}=\mathrm{2}{a}−\frac{\mathrm{20}}{{a}} \\ $$$${a}+\mathrm{24}\frac{{a}−\mathrm{3}}{\frac{\mathrm{20}+{a}^{\mathrm{2}} }{{a}}}=\frac{\mathrm{2}{a}^{\mathrm{2}} −\mathrm{20}}{{a}} \\ $$$${a}+\mathrm{24}\frac{{a}^{\mathrm{2}} −\mathrm{3}{a}}{\mathrm{20}+{a}^{\mathrm{2}} }=\frac{\mathrm{2}{a}^{\mathrm{2}} −\mathrm{20}}{{a}} \\ $$$${a}^{\mathrm{2}} +\mathrm{24}{a}\left({a}^{\mathrm{2}} −\mathrm{3}{a}\right)=\left(\mathrm{2}{a}^{\mathrm{2}} −\mathrm{20}\right)\left(\mathrm{20}+{a}^{\mathrm{2}} \right) \\ $$$${a}^{\mathrm{2}} +\mathrm{24}{a}^{\mathrm{3}} −\mathrm{72}{a}=\mathrm{40}{a}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{4}} −\mathrm{20}^{\mathrm{2}} −\mathrm{20}{a}^{\mathrm{2}} \\ $$$$−\mathrm{19}{a}^{\mathrm{2}} +\mathrm{24}{a}^{\mathrm{3}} −\mathrm{2}{a}^{\mathrm{4}} −\mathrm{72}{a}+\mathrm{400}=\mathrm{0} \\ $$$$\mathrm{19}{a}^{\mathrm{2}} −\mathrm{24}{a}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{4}} +\mathrm{72}{a}−\mathrm{400}=\mathrm{0} \\ $$$$\mathrm{2}{a}^{\mathrm{4}} −\mathrm{24}{a}^{\mathrm{3}} +\mathrm{19}{a}^{\mathrm{2}} +\mathrm{72}{a}−\mathrm{400}=\mathrm{0} \\ $$$${continue} \\ $$

Answered by Yozzii last updated on 28/Apr/16

a(b^2 +a)+24(a−3)=(2a−b^2 )(b^2 +a)  ab^2 +a^2 +24a−72=2ab^2 +2a^2 −b^4 −ab^2   b^4 −a^2 +24a−72=0  b^4 =a^2 −24a+72  b^4 =((400)/a^2 )  ∴ 400=a^4 −24a^3 +72a^2   a^4 −24a^3 +72a^2 −400=0          (∗)    Let f(x)=x^4 −24x^3 +72x^2 −400.  By trial and error, and application  of the intermediate value theorem,   a root for the equation exists in  the interval [20.5,20.6].  f^′ (x)=4x^3 −72x^2 +144x  By the Newton−Raphson method  the n+1 th approximation to the  root of f(x)=0, given the n th approximation,  is found by  x_(n+1) =x_n −((f(x_n ))/(f^′ (x_n )))  x_(n+1) =((3x_n ^4 −48x_n ^3 +72x_n ^2 +400)/(4x_n ^3 −72x_n ^2 +144x_n ))  Let x_1 =((20.5+20.6)/2)=20.55.  ⇒x_2 ≈20.540974  ⇒x_3 ≈20.540961  ⇒x_4 ≈20.540961  ∴ a≈20.541. Note that (∗) has more  than just one real root. This same  method could be used to search for  other real roots. Since b^2 =((20)/a), if  b∈R⇒a>0 ∴ b=±(√((20)/(20.541)))≈±0.9867

$${a}\left({b}^{\mathrm{2}} +{a}\right)+\mathrm{24}\left({a}−\mathrm{3}\right)=\left(\mathrm{2}{a}−{b}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} +{a}\right) \\ $$$${ab}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{24}{a}−\mathrm{72}=\mathrm{2}{ab}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} −{b}^{\mathrm{4}} −{ab}^{\mathrm{2}} \\ $$$${b}^{\mathrm{4}} −{a}^{\mathrm{2}} +\mathrm{24}{a}−\mathrm{72}=\mathrm{0} \\ $$$${b}^{\mathrm{4}} ={a}^{\mathrm{2}} −\mathrm{24}{a}+\mathrm{72} \\ $$$${b}^{\mathrm{4}} =\frac{\mathrm{400}}{{a}^{\mathrm{2}} } \\ $$$$\therefore\:\mathrm{400}={a}^{\mathrm{4}} −\mathrm{24}{a}^{\mathrm{3}} +\mathrm{72}{a}^{\mathrm{2}} \\ $$$${a}^{\mathrm{4}} −\mathrm{24}{a}^{\mathrm{3}} +\mathrm{72}{a}^{\mathrm{2}} −\mathrm{400}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\left(\ast\right) \\ $$$$ \\ $$$${Let}\:{f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{24}{x}^{\mathrm{3}} +\mathrm{72}{x}^{\mathrm{2}} −\mathrm{400}. \\ $$$${By}\:{trial}\:{and}\:{error},\:{and}\:{application} \\ $$$${of}\:{the}\:{intermediate}\:{value}\:{theorem},\: \\ $$$${a}\:{root}\:{for}\:{the}\:{equation}\:{exists}\:{in} \\ $$$${the}\:{interval}\:\left[\mathrm{20}.\mathrm{5},\mathrm{20}.\mathrm{6}\right]. \\ $$$${f}^{'} \left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} −\mathrm{72}{x}^{\mathrm{2}} +\mathrm{144}{x} \\ $$$${By}\:{the}\:{Newton}−{Raphson}\:{method} \\ $$$${the}\:{n}+\mathrm{1}\:{th}\:{approximation}\:{to}\:{the} \\ $$$${root}\:{of}\:{f}\left({x}\right)=\mathrm{0},\:{given}\:{the}\:{n}\:{th}\:{approximation}, \\ $$$${is}\:{found}\:{by} \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} −\frac{{f}\left({x}_{{n}} \right)}{{f}^{'} \left({x}_{{n}} \right)} \\ $$$${x}_{{n}+\mathrm{1}} =\frac{\mathrm{3}{x}_{{n}} ^{\mathrm{4}} −\mathrm{48}{x}_{{n}} ^{\mathrm{3}} +\mathrm{72}{x}_{{n}} ^{\mathrm{2}} +\mathrm{400}}{\mathrm{4}{x}_{{n}} ^{\mathrm{3}} −\mathrm{72}{x}_{{n}} ^{\mathrm{2}} +\mathrm{144}{x}_{{n}} } \\ $$$${Let}\:{x}_{\mathrm{1}} =\frac{\mathrm{20}.\mathrm{5}+\mathrm{20}.\mathrm{6}}{\mathrm{2}}=\mathrm{20}.\mathrm{55}. \\ $$$$\Rightarrow{x}_{\mathrm{2}} \approx\mathrm{20}.\mathrm{540974} \\ $$$$\Rightarrow{x}_{\mathrm{3}} \approx\mathrm{20}.\mathrm{540961} \\ $$$$\Rightarrow{x}_{\mathrm{4}} \approx\mathrm{20}.\mathrm{540961} \\ $$$$\therefore\:{a}\approx\mathrm{20}.\mathrm{541}.\:{Note}\:{that}\:\left(\ast\right)\:{has}\:{more} \\ $$$${than}\:{just}\:{one}\:{real}\:{root}.\:{This}\:{same} \\ $$$${method}\:{could}\:{be}\:{used}\:{to}\:{search}\:{for} \\ $$$${other}\:{real}\:{roots}.\:{Since}\:{b}^{\mathrm{2}} =\frac{\mathrm{20}}{{a}},\:{if} \\ $$$${b}\in\mathbb{R}\Rightarrow{a}>\mathrm{0}\:\therefore\:{b}=\pm\sqrt{\frac{\mathrm{20}}{\mathrm{20}.\mathrm{541}}}\approx\pm\mathrm{0}.\mathrm{9867} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com