Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 51921 by peter frank last updated on 01/Jan/19

A normal chord to an   ellipse (x^2 /a^2 )+(y^2 /b^2 )=1  make an angle of 45^°   with the axis.prove  that the square of its   length is equal to  ((32a^4 b^4 )/((a^2 +b^2 )^3 ))

$${A}\:{normal}\:{chord}\:{to}\:{an}\: \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${make}\:{an}\:{angle}\:{of}\:\mathrm{45}^{°} \\ $$$${with}\:{the}\:{axis}.{prove} \\ $$$${that}\:{the}\:{square}\:{of}\:{its}\: \\ $$$${length}\:{is}\:{equal}\:{to} \\ $$$$\frac{\mathrm{32}{a}^{\mathrm{4}} {b}^{\mathrm{4}} }{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{3}} }\: \\ $$

Answered by ajfour last updated on 01/Jan/19

let   x_P = acos θ  , y_P =bsin θ    −(dx/dy)∣_P  = ((asin θ)/(bcos θ)) = (a/b)tan θ = tan 45°=1  ⇒ tan θ = (b/a)  ⇒  acos θ = (a^2 /(√(a^2 +b^2 ))) = (a^2 /s)   (say)         bsin θ = (b^2 /s)  eq. of normal   let this normal intersects ellipse  aot the other point Q(h,k)  let  PQ = l    h = acos θ−(l/(√2))  , k = bcos θ−(l/(√2))  or    Q = ((a^2 /s)−(l/(√2)) , (b^2 /s)−(l/(√2)))  as Q is on ellipse,        b^2 ((a^2 /s)−(l/(√2)))^2 +a^2 ((b^2 /s)−(l/(√2)))^2 = a^2 b^2   ⇒  b^2 (a^2 (√2)−sl)^2 +a^2 (b^2 (√2)−sl)^2 = 2a^2 b^2 s^2   ⇒  2a^2 b^2 (a^2 +b^2 )+s^2 l^2 (a^2 +b^2 )            −2(√2)sa^2 b^2 l −2a^2 b^2 s^2  = 0  ⇒ since  s^2  = a^2 +b^2   , we get    l^2 −((2(√2)a^2 b^2 )/s^3 )l = 0  ⇒   l^2  = ((8a^4 b^4 )/((a^2 +b^2 )^3 ))  .

$${let}\:\:\:{x}_{{P}} =\:{a}\mathrm{cos}\:\theta\:\:,\:{y}_{{P}} ={b}\mathrm{sin}\:\theta \\ $$$$\:\:−\frac{{dx}}{{dy}}\mid_{{P}} \:=\:\frac{{a}\mathrm{sin}\:\theta}{{b}\mathrm{cos}\:\theta}\:=\:\frac{{a}}{{b}}\mathrm{tan}\:\theta\:=\:\mathrm{tan}\:\mathrm{45}°=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{tan}\:\theta\:=\:\frac{{b}}{{a}} \\ $$$$\Rightarrow\:\:{a}\mathrm{cos}\:\theta\:=\:\frac{{a}^{\mathrm{2}} }{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:=\:\frac{{a}^{\mathrm{2}} }{{s}}\:\:\:\left({say}\right) \\ $$$$\:\:\:\:\:\:\:{b}\mathrm{sin}\:\theta\:=\:\frac{{b}^{\mathrm{2}} }{{s}} \\ $$$${eq}.\:{of}\:{normal}\: \\ $$$${let}\:{this}\:{normal}\:{intersects}\:{ellipse} \\ $$$${aot}\:{the}\:{other}\:{point}\:{Q}\left({h},{k}\right) \\ $$$${let}\:\:{PQ}\:=\:{l} \\ $$$$\:\:{h}\:=\:{a}\mathrm{cos}\:\theta−\frac{{l}}{\sqrt{\mathrm{2}}}\:\:,\:{k}\:=\:{b}\mathrm{cos}\:\theta−\frac{{l}}{\sqrt{\mathrm{2}}} \\ $$$${or}\:\:\:\:{Q}\:=\:\left(\frac{{a}^{\mathrm{2}} }{{s}}−\frac{{l}}{\sqrt{\mathrm{2}}}\:,\:\frac{{b}^{\mathrm{2}} }{{s}}−\frac{{l}}{\sqrt{\mathrm{2}}}\right) \\ $$$${as}\:{Q}\:{is}\:{on}\:{ellipse}, \\ $$$$\:\:\:\:\:\:{b}^{\mathrm{2}} \left(\frac{{a}^{\mathrm{2}} }{{s}}−\frac{{l}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} \left(\frac{{b}^{\mathrm{2}} }{{s}}−\frac{{l}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} =\:{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} \sqrt{\mathrm{2}}−{sl}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} \left({b}^{\mathrm{2}} \sqrt{\mathrm{2}}−{sl}\right)^{\mathrm{2}} =\:\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {s}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)+{s}^{\mathrm{2}} {l}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\sqrt{\mathrm{2}}{sa}^{\mathrm{2}} {b}^{\mathrm{2}} {l}\:−\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {s}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\Rightarrow\:{since}\:\:{s}^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \:\:,\:{we}\:{get} \\ $$$$\:\:{l}^{\mathrm{2}} −\frac{\mathrm{2}\sqrt{\mathrm{2}}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{s}^{\mathrm{3}} }{l}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:{l}^{\mathrm{2}} \:=\:\frac{\mathrm{8}{a}^{\mathrm{4}} {b}^{\mathrm{4}} }{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\:. \\ $$

Commented by peter frank last updated on 01/Jan/19

thank sir

$${thank}\:{sir}\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com