Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 52099 by ajfour last updated on 03/Jan/19

Commented by ajfour last updated on 03/Jan/19

Find θ(t).

$${Find}\:\theta\left({t}\right). \\ $$

Answered by mr W last updated on 03/Jan/19

l=length of right string  l=(√(a^2 +(a+b)^2 −2a(a+b) cos θ))  (dl/dθ)=((a(a+b) sin θ)/(√(a^2 +(a+b)^2 −2a(a+b) cos θ)))  ω=(dθ/dt)  (dl/dt)=(dl/dθ)×(dθ/dt)=((a(a+b) sin θ)/(√(a^2 +(a+b)^2 −2a(a+b) cos θ))) ω  ω_M =(dl/(Rdt))=((a(a+b) sin θ)/(R(√(a^2 +(a+b)^2 −2a(a+b) cos θ)))) ω  mgasin θ=(1/2)m(aω)^2 +(1/2)Iω_M ^2   mgasin θ=(1/2)ma^2 ω^2 +(1/2)×((MR^2 )/2)×((a^2 (a+b)^2 sin^2  θ ω^2 )/(R^2 [a^2 +(a+b)^2 −2a(a+b) cos θ]))  2gsin θ=aω^2 {1+((M(a+b)^2 sin^2  θ)/(2m[a^2 +(a+b)^2 −2a(a+b) cos θ]))}  ((2g)/a)=ω^2 {(1/(sin θ))+(((a+b)M)/(4am))×((sin θ)/(((a^2 +(a+b)^2 )/(2a(a+b)))−cos θ))}  with λ=((a^2 +(a+b)^2 )/(2a(a+b))), μ=(((a+b)M)/(4am))  ((2g)/a)=ω^2 {(1/(sin θ))+((μ sin θ)/(λ−cos θ))}  (√((2g)/a))=ω(√((1/(sin θ))+((μ sin θ)/(λ−cos θ))))  ω=(dθ/dt)  ⇒∫_0 ^θ (√((1/(sin θ))+((μ sin θ)/(λ−cos θ)))) dθ=∫_0 ^t (√((2g)/a)) dt  ⇒∫_0 ^θ (√((1/(sin θ))+((μ sin θ)/(λ−cos θ)))) dθ=(√((2g)/a)) t  ..... i can not solve this integral .....

$${l}={length}\:{of}\:{right}\:{string} \\ $$$${l}=\sqrt{{a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{a}\left({a}+{b}\right)\:\mathrm{cos}\:\theta} \\ $$$$\frac{{dl}}{{d}\theta}=\frac{{a}\left({a}+{b}\right)\:\mathrm{sin}\:\theta}{\sqrt{{a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{a}\left({a}+{b}\right)\:\mathrm{cos}\:\theta}} \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$$\frac{{dl}}{{dt}}=\frac{{dl}}{{d}\theta}×\frac{{d}\theta}{{dt}}=\frac{{a}\left({a}+{b}\right)\:\mathrm{sin}\:\theta}{\sqrt{{a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{a}\left({a}+{b}\right)\:\mathrm{cos}\:\theta}}\:\omega \\ $$$$\omega_{{M}} =\frac{{dl}}{{Rdt}}=\frac{{a}\left({a}+{b}\right)\:\mathrm{sin}\:\theta}{{R}\sqrt{{a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{a}\left({a}+{b}\right)\:\mathrm{cos}\:\theta}}\:\omega \\ $$$${mga}\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}{m}\left({a}\omega\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{I}\omega_{{M}} ^{\mathrm{2}} \\ $$$${mga}\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}{ma}^{\mathrm{2}} \omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}×\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}×\frac{{a}^{\mathrm{2}} \left({a}+{b}\right)^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta\:\omega^{\mathrm{2}} }{{R}^{\mathrm{2}} \left[{a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{a}\left({a}+{b}\right)\:\mathrm{cos}\:\theta\right]} \\ $$$$\mathrm{2}{g}\mathrm{sin}\:\theta={a}\omega^{\mathrm{2}} \left\{\mathrm{1}+\frac{{M}\left({a}+{b}\right)^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{2}{m}\left[{a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{a}\left({a}+{b}\right)\:\mathrm{cos}\:\theta\right]}\right\} \\ $$$$\frac{\mathrm{2}{g}}{{a}}=\omega^{\mathrm{2}} \left\{\frac{\mathrm{1}}{\mathrm{sin}\:\theta}+\frac{\left({a}+{b}\right){M}}{\mathrm{4}{am}}×\frac{\mathrm{sin}\:\theta}{\frac{{a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{2}{a}\left({a}+{b}\right)}−\mathrm{cos}\:\theta}\right\} \\ $$$${with}\:\lambda=\frac{{a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{2}{a}\left({a}+{b}\right)},\:\mu=\frac{\left({a}+{b}\right){M}}{\mathrm{4}{am}} \\ $$$$\frac{\mathrm{2}{g}}{{a}}=\omega^{\mathrm{2}} \left\{\frac{\mathrm{1}}{\mathrm{sin}\:\theta}+\frac{\mu\:\mathrm{sin}\:\theta}{\lambda−\mathrm{cos}\:\theta}\right\} \\ $$$$\sqrt{\frac{\mathrm{2}{g}}{{a}}}=\omega\sqrt{\frac{\mathrm{1}}{\mathrm{sin}\:\theta}+\frac{\mu\:\mathrm{sin}\:\theta}{\lambda−\mathrm{cos}\:\theta}} \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\theta} \sqrt{\frac{\mathrm{1}}{\mathrm{sin}\:\theta}+\frac{\mu\:\mathrm{sin}\:\theta}{\lambda−\mathrm{cos}\:\theta}}\:{d}\theta=\int_{\mathrm{0}} ^{{t}} \sqrt{\frac{\mathrm{2}{g}}{{a}}}\:{dt} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\theta} \sqrt{\frac{\mathrm{1}}{\mathrm{sin}\:\theta}+\frac{\mu\:\mathrm{sin}\:\theta}{\lambda−\mathrm{cos}\:\theta}}\:{d}\theta=\sqrt{\frac{\mathrm{2}{g}}{{a}}}\:{t} \\ $$$$.....\:{i}\:{can}\:{not}\:{solve}\:{this}\:{integral}\:..... \\ $$

Commented by ajfour last updated on 03/Jan/19

At least we get ω(θ).   Thank you Sir!

$${At}\:{least}\:{we}\:{get}\:\omega\left(\theta\right).\: \\ $$$${Thank}\:{you}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com