Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 52140 by ajfour last updated on 03/Jan/19

Commented by ajfour last updated on 03/Jan/19

Find side s of the equilateral  triangles possible in terms of a & R.  For what maximum value of a_0   is such  triangle possible. What is  the side s for this value of a_0  .

$${Find}\:{side}\:\boldsymbol{{s}}\:{of}\:{the}\:{equilateral} \\ $$$${triangles}\:{possible}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}}\:\&\:\boldsymbol{{R}}. \\ $$$${For}\:{what}\:{maximum}\:{value}\:{of}\:\boldsymbol{{a}}_{\mathrm{0}} \\ $$$${is}\:{such}\:\:{triangle}\:{possible}.\:{What}\:{is} \\ $$$${the}\:{side}\:\boldsymbol{{s}}\:{for}\:{this}\:{value}\:{of}\:\boldsymbol{{a}}_{\mathrm{0}} \:. \\ $$

Commented by Olalekan99 last updated on 04/Jan/19

pls which did u use for sketching  or is it dis same app

$${pls}\:{which}\:{did}\:{u}\:{use}\:{for}\:{sketching} \\ $$$${or}\:{is}\:{it}\:{dis}\:{same}\:{app} \\ $$

Answered by mr W last updated on 03/Jan/19

Commented by mr W last updated on 03/Jan/19

AO^2 =a^2 +R^2   OB^2 =AO^2 +AB^2 −2×AO×AB×cos ∠OAB  R^2 =a^2 +R^2 +s^2 −2s(√(a^2 +R^2 )) cos 30^°   ⇒s^2 −(√(3(a^2 +R^2 )))s+a^2 =0  ⇒s=(((√(3(R^2 +a^2 )))±(√(3R^2 −a^2 )))/2)   ...(i)  we can see there are two equilateral  triangles possible.    maximum a is when C coincides with  D, i.e. when ∠OAD=30°.  a_0 =(√3)R  s_0 =a_0 =(√3)R  but we can also get this from (i):  3R^2 −a^2 ≥0  ⇒a≤(√3)R ⇒a_0 =(√3)R  s_0 =((√(3(R^2 +3R^2 )))/2)=(√3)R

$${AO}^{\mathrm{2}} ={a}^{\mathrm{2}} +{R}^{\mathrm{2}} \\ $$$${OB}^{\mathrm{2}} ={AO}^{\mathrm{2}} +{AB}^{\mathrm{2}} −\mathrm{2}×{AO}×{AB}×\mathrm{cos}\:\angle{OAB} \\ $$$${R}^{\mathrm{2}} ={a}^{\mathrm{2}} +{R}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{2}{s}\sqrt{{a}^{\mathrm{2}} +{R}^{\mathrm{2}} }\:\mathrm{cos}\:\mathrm{30}^{°} \\ $$$$\Rightarrow{s}^{\mathrm{2}} −\sqrt{\mathrm{3}\left({a}^{\mathrm{2}} +{R}^{\mathrm{2}} \right)}{s}+{a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{s}=\frac{\sqrt{\mathrm{3}\left({R}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}\pm\sqrt{\mathrm{3}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\mathrm{2}}\:\:\:...\left({i}\right) \\ $$$${we}\:{can}\:{see}\:{there}\:{are}\:{two}\:{equilateral} \\ $$$${triangles}\:{possible}. \\ $$$$ \\ $$$${maximum}\:{a}\:{is}\:{when}\:{C}\:{coincides}\:{with} \\ $$$${D},\:{i}.{e}.\:{when}\:\angle{OAD}=\mathrm{30}°. \\ $$$${a}_{\mathrm{0}} =\sqrt{\mathrm{3}}{R} \\ $$$${s}_{\mathrm{0}} ={a}_{\mathrm{0}} =\sqrt{\mathrm{3}}{R} \\ $$$${but}\:{we}\:{can}\:{also}\:{get}\:{this}\:{from}\:\left({i}\right): \\ $$$$\mathrm{3}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow{a}\leqslant\sqrt{\mathrm{3}}{R}\:\Rightarrow{a}_{\mathrm{0}} =\sqrt{\mathrm{3}}{R} \\ $$$${s}_{\mathrm{0}} =\frac{\sqrt{\mathrm{3}\left({R}^{\mathrm{2}} +\mathrm{3}{R}^{\mathrm{2}} \right)}}{\mathrm{2}}=\sqrt{\mathrm{3}}{R} \\ $$

Commented by ajfour last updated on 03/Jan/19

Correct and intelligent way Sir.  Thanks again! But what if we have  parabola  y=x^2  instead of the circle,  with D as origin ?

$${Correct}\:{and}\:{intelligent}\:{way}\:{Sir}. \\ $$$${Thanks}\:{again}!\:{But}\:{what}\:{if}\:{we}\:{have} \\ $$$${parabola}\:\:{y}={x}^{\mathrm{2}} \:{instead}\:{of}\:{the}\:{circle}, \\ $$$${with}\:{D}\:{as}\:{origin}\:? \\ $$

Answered by mr W last updated on 04/Jan/19

solution for parabola instead of circle:  eqn. of parabola:  y=cx^2  with c=1  A(a, 0), a≥0  B(p, cp^2 )  C(q, cq^2 )  AB^2 =s^2 =(p−a)^2 +c^2 p^4   AC^2 =s^2 =(q−a)^2 +c^2 q^4   BC^2 =s^2 =(p−q)^2 +c^2 (p^2 −q^2 )^2   (p−a)^2 +c^2 p^4 =(q−a)^2 +c^2 q^4   p^2 −2ap+c^2 p^4 =q^2 −2aq+c^2 q^4   ⇒(p+q)[1+c^2 (p^2 +q^2 )]=2a    (p−a)^2 +c^2 p^4 =(p−q)^2 +c^2 (p^2 −q^2 )^2   p^2 −2ap+a^2 +c^2 p^4 =p^2 +q^2 −2pq+c^2 p^4 −2c^2 p^2 q^2 +c^2 q^4   ⇒a^2 −2ap=q^2 −2pq−2c^2 p^2 q^2 +c^2 q^4   for c=1:  ⇒(p+q)(1+p^2 +q^2 )=2a      ...(i)  ⇒a^2 −2ap=q^2 −2pq−2p^2 q^2 +q^4     ...(ii)    from (ii):  2q^2 p^2 −2(a−q)p+a^2 −q^2 −q^4 =0    ⇒p=((a−q±(√((a−q)^2 −2q^2 (a^2 −q^2 −q^4 ))))/(2q^2 ))  putting this into (i) we get an eqn. for q.    for a given a there can be   − no solution  − one or more solutions    examples:  a=2:  q=1.9741⇒p=−1.3878⇒s=3.8971  q=1.2310⇒p=0.3031⇒s=1.6992  q=0.3031⇒p=1.2310 (as above)  q=−1.3878⇒p=1.9741 (as above)    a_(max) =4.13765:  q=2.0284⇒p=−0.4803⇒s=4.6235  q=−0.4803⇒p=2.0284 (as above)

$${solution}\:{for}\:{parabola}\:{instead}\:{of}\:{circle}: \\ $$$${eqn}.\:{of}\:{parabola}: \\ $$$${y}={cx}^{\mathrm{2}} \:{with}\:{c}=\mathrm{1} \\ $$$${A}\left({a},\:\mathrm{0}\right),\:{a}\geqslant\mathrm{0} \\ $$$${B}\left({p},\:{cp}^{\mathrm{2}} \right) \\ $$$${C}\left({q},\:{cq}^{\mathrm{2}} \right) \\ $$$${AB}^{\mathrm{2}} ={s}^{\mathrm{2}} =\left({p}−{a}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} {p}^{\mathrm{4}} \\ $$$${AC}^{\mathrm{2}} ={s}^{\mathrm{2}} =\left({q}−{a}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} {q}^{\mathrm{4}} \\ $$$${BC}^{\mathrm{2}} ={s}^{\mathrm{2}} =\left({p}−{q}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} \left({p}^{\mathrm{2}} −{q}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\left({p}−{a}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} {p}^{\mathrm{4}} =\left({q}−{a}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} {q}^{\mathrm{4}} \\ $$$${p}^{\mathrm{2}} −\mathrm{2}{ap}+{c}^{\mathrm{2}} {p}^{\mathrm{4}} ={q}^{\mathrm{2}} −\mathrm{2}{aq}+{c}^{\mathrm{2}} {q}^{\mathrm{4}} \\ $$$$\Rightarrow\left({p}+{q}\right)\left[\mathrm{1}+{c}^{\mathrm{2}} \left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\right]=\mathrm{2}{a} \\ $$$$ \\ $$$$\left({p}−{a}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} {p}^{\mathrm{4}} =\left({p}−{q}\right)^{\mathrm{2}} +{c}^{\mathrm{2}} \left({p}^{\mathrm{2}} −{q}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} −\mathrm{2}{ap}+{a}^{\mathrm{2}} +{c}^{\mathrm{2}} {p}^{\mathrm{4}} ={p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{2}{pq}+{c}^{\mathrm{2}} {p}^{\mathrm{4}} −\mathrm{2}{c}^{\mathrm{2}} {p}^{\mathrm{2}} {q}^{\mathrm{2}} +{c}^{\mathrm{2}} {q}^{\mathrm{4}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} −\mathrm{2}{ap}={q}^{\mathrm{2}} −\mathrm{2}{pq}−\mathrm{2}{c}^{\mathrm{2}} {p}^{\mathrm{2}} {q}^{\mathrm{2}} +{c}^{\mathrm{2}} {q}^{\mathrm{4}} \\ $$$${for}\:{c}=\mathrm{1}: \\ $$$$\Rightarrow\left({p}+{q}\right)\left(\mathrm{1}+{p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)=\mathrm{2}{a}\:\:\:\:\:\:...\left({i}\right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} −\mathrm{2}{ap}={q}^{\mathrm{2}} −\mathrm{2}{pq}−\mathrm{2}{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{4}} \:\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({ii}\right): \\ $$$$\mathrm{2}{q}^{\mathrm{2}} {p}^{\mathrm{2}} −\mathrm{2}\left({a}−{q}\right){p}+{a}^{\mathrm{2}} −{q}^{\mathrm{2}} −{q}^{\mathrm{4}} =\mathrm{0}\:\: \\ $$$$\Rightarrow{p}=\frac{{a}−{q}\pm\sqrt{\left({a}−{q}\right)^{\mathrm{2}} −\mathrm{2}{q}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{q}^{\mathrm{2}} −{q}^{\mathrm{4}} \right)}}{\mathrm{2}{q}^{\mathrm{2}} } \\ $$$${putting}\:{this}\:{into}\:\left({i}\right)\:{we}\:{get}\:{an}\:{eqn}.\:{for}\:{q}. \\ $$$$ \\ $$$${for}\:{a}\:{given}\:\boldsymbol{{a}}\:{there}\:{can}\:{be}\: \\ $$$$−\:{no}\:{solution} \\ $$$$−\:{one}\:{or}\:{more}\:{solutions} \\ $$$$ \\ $$$${examples}: \\ $$$${a}=\mathrm{2}: \\ $$$${q}=\mathrm{1}.\mathrm{9741}\Rightarrow{p}=−\mathrm{1}.\mathrm{3878}\Rightarrow{s}=\mathrm{3}.\mathrm{8971} \\ $$$${q}=\mathrm{1}.\mathrm{2310}\Rightarrow{p}=\mathrm{0}.\mathrm{3031}\Rightarrow{s}=\mathrm{1}.\mathrm{6992} \\ $$$${q}=\mathrm{0}.\mathrm{3031}\Rightarrow{p}=\mathrm{1}.\mathrm{2310}\:\left({as}\:{above}\right) \\ $$$${q}=−\mathrm{1}.\mathrm{3878}\Rightarrow{p}=\mathrm{1}.\mathrm{9741}\:\left({as}\:{above}\right) \\ $$$$ \\ $$$${a}_{{max}} =\mathrm{4}.\mathrm{13765}: \\ $$$${q}=\mathrm{2}.\mathrm{0284}\Rightarrow{p}=−\mathrm{0}.\mathrm{4803}\Rightarrow{s}=\mathrm{4}.\mathrm{6235} \\ $$$${q}=−\mathrm{0}.\mathrm{4803}\Rightarrow{p}=\mathrm{2}.\mathrm{0284}\:\left({as}\:{above}\right) \\ $$

Commented by ajfour last updated on 04/Jan/19

Thanks for it, Sir.

$${Thanks}\:{for}\:{it},\:{Sir}. \\ $$

Commented by mr W last updated on 04/Jan/19

Commented by mr W last updated on 04/Jan/19

Commented by mr W last updated on 04/Jan/19

i have reduced to a single eqn. which  can be solved nummerically.

$${i}\:{have}\:{reduced}\:{to}\:{a}\:{single}\:{eqn}.\:{which} \\ $$$${can}\:{be}\:{solved}\:{nummerically}. \\ $$

Commented by mr W last updated on 04/Jan/19

from eqn. (ii) we get p in terms of q:  p=((a−q±(√((a−q)^2 −2q^2 (a^2 −q^2 −q^4 ))))/(2q^2 ))=p(q)  the eqn. (i) is then an eqn. of q alone:  [p(q)+q][1+p^2 (q)+q^2 ]−2a=0  from which we can solve for q by  graph method as shown in the  diagram. usually there are 4 roots  for q. due to symmetry these 4 roots  represent in reality 2 different equilateral  triangles.

$${from}\:{eqn}.\:\left({ii}\right)\:{we}\:{get}\:{p}\:{in}\:{terms}\:{of}\:{q}: \\ $$$${p}=\frac{{a}−{q}\pm\sqrt{\left({a}−{q}\right)^{\mathrm{2}} −\mathrm{2}{q}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{q}^{\mathrm{2}} −{q}^{\mathrm{4}} \right)}}{\mathrm{2}{q}^{\mathrm{2}} }={p}\left({q}\right) \\ $$$${the}\:{eqn}.\:\left({i}\right)\:{is}\:{then}\:{an}\:{eqn}.\:{of}\:{q}\:{alone}: \\ $$$$\left[{p}\left({q}\right)+{q}\right]\left[\mathrm{1}+{p}^{\mathrm{2}} \left({q}\right)+{q}^{\mathrm{2}} \right]−\mathrm{2}{a}=\mathrm{0} \\ $$$${from}\:{which}\:{we}\:{can}\:{solve}\:{for}\:{q}\:{by} \\ $$$${graph}\:{method}\:{as}\:{shown}\:{in}\:{the} \\ $$$${diagram}.\:{usually}\:{there}\:{are}\:\mathrm{4}\:{roots} \\ $$$${for}\:{q}.\:{due}\:{to}\:{symmetry}\:{these}\:\mathrm{4}\:{roots} \\ $$$${represent}\:{in}\:{reality}\:\mathrm{2}\:{different}\:{equilateral} \\ $$$${triangles}. \\ $$

Commented by ajfour last updated on 04/Jan/19

but there we have both p and q,  and p isn′t easy in terms of q from  the other equation, Sir.  Thanks for as much you brought out!

$${but}\:{there}\:{we}\:{have}\:{both}\:{p}\:{and}\:{q}, \\ $$$${and}\:{p}\:{isn}'{t}\:{easy}\:{in}\:{terms}\:{of}\:{q}\:{from} \\ $$$${the}\:{other}\:{equation},\:{Sir}. \\ $$$${Thanks}\:{for}\:{as}\:{much}\:{you}\:{brought}\:{out}! \\ $$

Commented by mr W last updated on 04/Jan/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com