Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 52426 by ajfour last updated on 07/Jan/19

Commented by ajfour last updated on 07/Jan/19

Find (R/r)  if  sin θ = (5/(13)) .

$${Find}\:\frac{{R}}{{r}}\:\:{if}\:\:\mathrm{sin}\:\theta\:=\:\frac{\mathrm{5}}{\mathrm{13}}\:. \\ $$

Answered by mr W last updated on 07/Jan/19

BT=(√((R+r)^2 −R^2 ))=(√(r(2R+r)))  AS=(√((R+r)^2 −r^2 ))=(√(R(R+2r)))  BP=((BT)/(sin θ))=((√(r(2R+r)))/(sin θ))  SP=((AS)/(tan θ))=((√(R(R+2r)))/(tan θ))  SP=BP+r  ((√(R(R+2r)))/(tan θ))=((√(r(2R+r)))/(sin θ))+r  let λ=(R/r)  ⇒cos θ (√(λ(λ+2)))=(√(2λ+1))+sin θ  sin θ=(5/(13))⇒cos θ=((12)/(13))  ⇒12(√(λ(λ+2)))=13(√(2λ+1))+5  ⇒λ≈2.0185

$${BT}=\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} }=\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)} \\ $$$${AS}=\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }=\sqrt{{R}\left({R}+\mathrm{2}{r}\right)} \\ $$$${BP}=\frac{{BT}}{\mathrm{sin}\:\theta}=\frac{\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}}{\mathrm{sin}\:\theta} \\ $$$${SP}=\frac{{AS}}{\mathrm{tan}\:\theta}=\frac{\sqrt{{R}\left({R}+\mathrm{2}{r}\right)}}{\mathrm{tan}\:\theta} \\ $$$${SP}={BP}+{r} \\ $$$$\frac{\sqrt{{R}\left({R}+\mathrm{2}{r}\right)}}{\mathrm{tan}\:\theta}=\frac{\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}}{\mathrm{sin}\:\theta}+{r} \\ $$$${let}\:\lambda=\frac{{R}}{{r}} \\ $$$$\Rightarrow\mathrm{cos}\:\theta\:\sqrt{\lambda\left(\lambda+\mathrm{2}\right)}=\sqrt{\mathrm{2}\lambda+\mathrm{1}}+\mathrm{sin}\:\theta \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{5}}{\mathrm{13}}\Rightarrow\mathrm{cos}\:\theta=\frac{\mathrm{12}}{\mathrm{13}} \\ $$$$\Rightarrow\mathrm{12}\sqrt{\lambda\left(\lambda+\mathrm{2}\right)}=\mathrm{13}\sqrt{\mathrm{2}\lambda+\mathrm{1}}+\mathrm{5} \\ $$$$\Rightarrow\lambda\approx\mathrm{2}.\mathrm{0185} \\ $$

Commented by MJS last updated on 07/Jan/19

this can be solved exactly: λ=((181)/(144))+((5(√(481)))/(144))

$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{exactly}:\:\lambda=\frac{\mathrm{181}}{\mathrm{144}}+\frac{\mathrm{5}\sqrt{\mathrm{481}}}{\mathrm{144}} \\ $$

Commented by mr W last updated on 07/Jan/19

that′s great sir! thanks!

$${that}'{s}\:{great}\:{sir}!\:{thanks}! \\ $$

Commented by ajfour last updated on 08/Jan/19

Thank you mrW Sir, Straight and Nice!  MjS Sir is very Wise.(Thanks).

$${Thank}\:{you}\:{mrW}\:{Sir},\:\mathcal{S}{traight}\:{and}\:\mathcal{N}{ice}! \\ $$$${MjS}\:{Sir}\:{is}\:{very}\:\mathcal{W}{ise}.\left({Thanks}\right). \\ $$

Answered by mr W last updated on 07/Jan/19

(π/2)−θ=π−(sin^(−1) (R/(R+r))+cos^(−1) (r/(R+r)))  sin θ=−(r/(R+r))(√(1−((R/(R+r)))^2 ))+(R/(R+r))(√(1−((r/(R+r)))^2 ))  sin θ=((R(√(R(R+2r)))−r(√(r(2R+r))))/((R+r)^2 ))  ⇒sin θ=((λ(√(λ(λ+2)))−(√(2λ+1)))/((1+λ)^2 ))=(5/(13))  ⇒λ≈2.0185

$$\frac{\pi}{\mathrm{2}}−\theta=\pi−\left(\mathrm{sin}^{−\mathrm{1}} \frac{{R}}{{R}+{r}}+\mathrm{cos}^{−\mathrm{1}} \frac{{r}}{{R}+{r}}\right) \\ $$$$\mathrm{sin}\:\theta=−\frac{{r}}{{R}+{r}}\sqrt{\mathrm{1}−\left(\frac{{R}}{{R}+{r}}\right)^{\mathrm{2}} }+\frac{{R}}{{R}+{r}}\sqrt{\mathrm{1}−\left(\frac{{r}}{{R}+{r}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{sin}\:\theta=\frac{{R}\sqrt{{R}\left({R}+\mathrm{2}{r}\right)}−{r}\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}}{\left({R}+{r}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\lambda\sqrt{\lambda\left(\lambda+\mathrm{2}\right)}−\sqrt{\mathrm{2}\lambda+\mathrm{1}}}{\left(\mathrm{1}+\lambda\right)^{\mathrm{2}} }=\frac{\mathrm{5}}{\mathrm{13}} \\ $$$$\Rightarrow\lambda\approx\mathrm{2}.\mathrm{0185} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com