Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 52558 by ajfour last updated on 09/Jan/19

Commented by ajfour last updated on 10/Jan/19

eq. of parabola be y= (x^2 /a)  and  eq. of line  be y= mx   (m=tan φ),  if both circles touch the line at a  same point and circle in red has  maximum radius, determine  tan φ and radius r.

$${eq}.\:{of}\:{parabola}\:{be}\:{y}=\:\frac{{x}^{\mathrm{2}} }{{a}}\:\:{and} \\ $$$${eq}.\:{of}\:{line}\:\:{be}\:{y}=\:{mx}\:\:\:\left({m}=\mathrm{tan}\:\phi\right), \\ $$$${if}\:{both}\:{circles}\:{touch}\:{the}\:{line}\:{at}\:{a} \\ $$$${same}\:{point}\:{and}\:{circle}\:{in}\:{red}\:{has} \\ $$$${maximum}\:{radius},\:{determine} \\ $$$$\mathrm{tan}\:\phi\:{and}\:{radius}\:{r}. \\ $$$$ \\ $$

Commented by ajfour last updated on 10/Jan/19

Commented by ajfour last updated on 10/Jan/19

y= (x^2 /a)   ⇒  tan φ = (dy/dx) = ((2x)/a)   ...(i),(ii)  sin φ = ((x−r)/(3r))     ....(iii)  tan α = tan ((π/4)−(φ/2))= (r/(y+3rcos φ))  ..(iv)  ___________________________  sin φ = ((atan φ−2r)/(6r))    [using (ii) in (iii)]     .....(I)  using (i) in (iv) we get    ((1−tan (φ/2))/(1+tan (φ/2))) = (r/(((a^2 tan^2 φ)/(4a))+3rcos φ))   ..(II)  let  tan (φ/2) = t  in (I )  ((2t(6r))/(1+t^2 )) = ((2at)/(1+t^2 ))−2r  ⇒  r(6t+1+t^2 )=at  ⇒   r = ((at)/(t^2 +6t+1))     ....(III)  Now considering (II)  ((1−t)/(1+t)) = (r/(((at^2 )/((1+t^2 )^2 ))+3r(((1−t^2 )/(1+t^2 )))))  ⇒ (1−t)[at^2 +3r(1−t^4 )]=r(1+t)(1+t^2 )^2   ⇒  at^2 (1−t)= r[(1+t)(1+t^2 )^2 −3(1−t)(1−t^4 )]  using (III) in eq. above  t(1−t)(t^2 +6t+1)= (1+t)(1+t^2 )^2                                                −3(1−t)(1−t^4 )  From above eq. we obtain      t = tan (φ/2) ≈ 0.517     tan φ = ((2t)/(1+t^2 )) ≈ 0.816      &  r= ((at)/(t^2 +6t+1)) ≈ 0.1183a .

$${y}=\:\frac{{x}^{\mathrm{2}} }{{a}}\:\:\:\Rightarrow\:\:\mathrm{tan}\:\phi\:=\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{x}}{{a}}\:\:\:...\left({i}\right),\left({ii}\right) \\ $$$$\mathrm{sin}\:\phi\:=\:\frac{{x}−{r}}{\mathrm{3}{r}}\:\:\:\:\:....\left({iii}\right) \\ $$$$\mathrm{tan}\:\alpha\:=\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\phi}{\mathrm{2}}\right)=\:\frac{{r}}{{y}+\mathrm{3}{r}\mathrm{cos}\:\phi}\:\:..\left({iv}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\mathrm{sin}\:\phi\:=\:\frac{{a}\mathrm{tan}\:\phi−\mathrm{2}{r}}{\mathrm{6}{r}}\:\:\:\:\left[{using}\:\left({ii}\right)\:{in}\:\left({iii}\right)\right] \\ $$$$\:\:\:.....\left({I}\right) \\ $$$${using}\:\left({i}\right)\:{in}\:\left({iv}\right)\:{we}\:{get} \\ $$$$\:\:\frac{\mathrm{1}−\mathrm{tan}\:\frac{\phi}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:\frac{\phi}{\mathrm{2}}}\:=\:\frac{{r}}{\frac{{a}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \phi}{\mathrm{4}{a}}+\mathrm{3}{r}\mathrm{cos}\:\phi}\:\:\:..\left({II}\right) \\ $$$${let}\:\:\mathrm{tan}\:\frac{\phi}{\mathrm{2}}\:=\:{t}\:\:{in}\:\left({I}\:\right) \\ $$$$\frac{\mathrm{2}{t}\left(\mathrm{6}{r}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}{at}}{\mathrm{1}+{t}^{\mathrm{2}} }−\mathrm{2}{r} \\ $$$$\Rightarrow\:\:{r}\left(\mathrm{6}{t}+\mathrm{1}+{t}^{\mathrm{2}} \right)={at} \\ $$$$\Rightarrow\:\:\:{r}\:=\:\frac{{at}}{{t}^{\mathrm{2}} +\mathrm{6}{t}+\mathrm{1}}\:\:\:\:\:....\left({III}\right) \\ $$$${Now}\:{considering}\:\left({II}\right) \\ $$$$\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\:=\:\frac{{r}}{\frac{{at}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }+\mathrm{3}{r}\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)} \\ $$$$\Rightarrow\:\left(\mathrm{1}−{t}\right)\left[{at}^{\mathrm{2}} +\mathrm{3}{r}\left(\mathrm{1}−{t}^{\mathrm{4}} \right)\right]={r}\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${at}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)=\:{r}\left[\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{3}\left(\mathrm{1}−{t}\right)\left(\mathrm{1}−{t}^{\mathrm{4}} \right)\right] \\ $$$${using}\:\left({III}\right)\:{in}\:{eq}.\:{above} \\ $$$$\boldsymbol{{t}}\left(\mathrm{1}−\boldsymbol{{t}}\right)\left(\boldsymbol{{t}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{t}}+\mathrm{1}\right)=\:\left(\mathrm{1}+\boldsymbol{{t}}\right)\left(\mathrm{1}+\boldsymbol{{t}}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{3}\left(\mathrm{1}−\boldsymbol{{t}}\right)\left(\mathrm{1}−\boldsymbol{{t}}^{\mathrm{4}} \right) \\ $$$${From}\:{above}\:{eq}.\:{we}\:{obtain}\: \\ $$$$\:\:\:{t}\:=\:\mathrm{tan}\:\frac{\phi}{\mathrm{2}}\:\approx\:\mathrm{0}.\mathrm{517} \\ $$$$\:\:\:\mathrm{tan}\:\phi\:=\:\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\approx\:\mathrm{0}.\mathrm{816}\: \\ $$$$\:\:\:\&\:\:{r}=\:\frac{{at}}{{t}^{\mathrm{2}} +\mathrm{6}{t}+\mathrm{1}}\:\approx\:\mathrm{0}.\mathrm{1183}{a}\:. \\ $$

Commented by MJS last updated on 12/Jan/19

I′m confused...  it′s possible to get the equations of 2 circles  with radius r, having exactly 1 common point  and their common tangent t: y=xtan φ  it′s possible to find a parabola having exactly  1 common point with the red circle (at least  approximately)  but in general, the common tangent of  the circle and the parabola is not parallel  to y=xtan φ

$$\mathrm{I}'\mathrm{m}\:\mathrm{confused}... \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{2}\:\mathrm{circles} \\ $$$$\mathrm{with}\:\mathrm{radius}\:{r},\:\mathrm{having}\:\mathrm{exactly}\:\mathrm{1}\:\mathrm{common}\:\mathrm{point} \\ $$$$\mathrm{and}\:\mathrm{their}\:\mathrm{common}\:\mathrm{tangent}\:{t}:\:{y}={x}\mathrm{tan}\:\phi \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{a}\:\mathrm{parabola}\:\mathrm{having}\:\mathrm{exactly} \\ $$$$\mathrm{1}\:\mathrm{common}\:\mathrm{point}\:\mathrm{with}\:\mathrm{the}\:\mathrm{red}\:\mathrm{circle}\:\left(\mathrm{at}\:\mathrm{least}\right. \\ $$$$\left.\mathrm{approximately}\right) \\ $$$$\mathrm{but}\:\mathrm{in}\:\mathrm{general},\:\mathrm{the}\:\mathrm{common}\:\mathrm{tangent}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{circle}\:\mathrm{and}\:\mathrm{the}\:\mathrm{parabola}\:\mathrm{is}\:\mathrm{not}\:\mathrm{parallel} \\ $$$$\mathrm{to}\:{y}={x}\mathrm{tan}\:\phi \\ $$

Commented by ajfour last updated on 12/Jan/19

when the red circle has to be of  maximum radius, it should be so  Sir.

$${when}\:{the}\:{red}\:{circle}\:{has}\:{to}\:{be}\:{of} \\ $$$${maximum}\:{radius},\:{it}\:{should}\:{be}\:{so} \\ $$$${Sir}. \\ $$

Commented by MJS last updated on 12/Jan/19

it′s just not obvious to me... I′ll have to go  through it...

$$\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{not}\:\mathrm{obvious}\:\mathrm{to}\:\mathrm{me}...\:\mathrm{I}'\mathrm{ll}\:\mathrm{have}\:\mathrm{to}\:\mathrm{go} \\ $$$$\mathrm{through}\:\mathrm{it}... \\ $$

Answered by MJS last updated on 12/Jan/19

line l: y=kx  circle 1 c_1 : (x−r)^2 +(y−n)^2 =r^2   circle 2 c_2 : (x−p)^2 +(y−q)^2 =r^2   O=l∩c_1 ∩c_2 = ((((1+(k/(√(k^2 +1))))r)),((k(1+(k/(√(k^2 +1))))r)) )  n=(k+(√(k^2 +1)))r  p=(1+((2k)/(√(k^2 +1))))r  q=(k+((k^2 −1)/(√(k^2 +1))))r  parabola par: y=(1/a)x^2   P=par∩c_2   (1)  c_2 : (x−p)^2 +(y−q)^2 =r^2   (2)  par: y=(1/a)x^2   (3)  derivate of (1)  (4)  derivate of (2)  variables a, k, r, x, y  (5)  maximum for r  not sure if this can be solved  it looks to me as if for given a we can find  matching k, x, y for any value of r ⇒ no  maximum exists  can you exactly draw your solution to  make it clearer?

$$\mathrm{line}\:{l}:\:{y}={kx} \\ $$$$\mathrm{circle}\:\mathrm{1}\:{c}_{\mathrm{1}} :\:\left({x}−{r}\right)^{\mathrm{2}} +\left({y}−{n}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{circle}\:\mathrm{2}\:{c}_{\mathrm{2}} :\:\left({x}−{p}\right)^{\mathrm{2}} +\left({y}−{q}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${O}={l}\cap{c}_{\mathrm{1}} \cap{c}_{\mathrm{2}} =\begin{pmatrix}{\left(\mathrm{1}+\frac{{k}}{\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}\right){r}}\\{{k}\left(\mathrm{1}+\frac{{k}}{\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}\right){r}}\end{pmatrix} \\ $$$${n}=\left({k}+\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}\right){r} \\ $$$${p}=\left(\mathrm{1}+\frac{\mathrm{2}{k}}{\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}\right){r} \\ $$$${q}=\left({k}+\frac{{k}^{\mathrm{2}} −\mathrm{1}}{\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}\right){r} \\ $$$$\mathrm{parabola}\:{par}:\:{y}=\frac{\mathrm{1}}{{a}}{x}^{\mathrm{2}} \\ $$$${P}={par}\cap{c}_{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)\:\:{c}_{\mathrm{2}} :\:\left({x}−{p}\right)^{\mathrm{2}} +\left({y}−{q}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\:{par}:\:{y}=\frac{\mathrm{1}}{{a}}{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\:\mathrm{derivate}\:\mathrm{of}\:\left(\mathrm{1}\right) \\ $$$$\left(\mathrm{4}\right)\:\:\mathrm{derivate}\:\mathrm{of}\:\left(\mathrm{2}\right) \\ $$$$\mathrm{variables}\:{a},\:{k},\:{r},\:{x},\:{y} \\ $$$$\left(\mathrm{5}\right)\:\:\mathrm{maximum}\:\mathrm{for}\:{r} \\ $$$$\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved} \\ $$$$\mathrm{it}\:\mathrm{looks}\:\mathrm{to}\:\mathrm{me}\:\mathrm{as}\:\mathrm{if}\:\mathrm{for}\:\mathrm{given}\:{a}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find} \\ $$$$\mathrm{matching}\:{k},\:{x},\:{y}\:\mathrm{for}\:\mathrm{any}\:\mathrm{value}\:\mathrm{of}\:{r}\:\Rightarrow\:\mathrm{no} \\ $$$$\mathrm{maximum}\:\mathrm{exists} \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{exactly}\:\mathrm{draw}\:\mathrm{your}\:\mathrm{solution}\:\mathrm{to} \\ $$$$\mathrm{make}\:\mathrm{it}\:\mathrm{clearer}? \\ $$

Commented by MJS last updated on 12/Jan/19

imagine the following steps  1. draw y=(1/a)x^2   2. fix a pole at origin, attach 2 circles with  any radius  3. slide up the circles along the pole, the  left handed circle along the y−axis  ⇒ at some distance the right handed circle  will intersect the parabola in exactly 1 point  why should there be an upper limit for r?

$$\mathrm{imagine}\:\mathrm{the}\:\mathrm{following}\:\mathrm{steps} \\ $$$$\mathrm{1}.\:\mathrm{draw}\:{y}=\frac{\mathrm{1}}{{a}}{x}^{\mathrm{2}} \\ $$$$\mathrm{2}.\:\mathrm{fix}\:\mathrm{a}\:\mathrm{pole}\:\mathrm{at}\:\mathrm{origin},\:\mathrm{attach}\:\mathrm{2}\:\mathrm{circles}\:\mathrm{with} \\ $$$$\mathrm{any}\:\mathrm{radius} \\ $$$$\mathrm{3}.\:\mathrm{slide}\:\mathrm{up}\:\mathrm{the}\:\mathrm{circles}\:\mathrm{along}\:\mathrm{the}\:\mathrm{pole},\:\mathrm{the} \\ $$$$\mathrm{left}\:\mathrm{handed}\:\mathrm{circle}\:\mathrm{along}\:\mathrm{the}\:{y}−\mathrm{axis} \\ $$$$\Rightarrow\:\mathrm{at}\:\mathrm{some}\:\mathrm{distance}\:\mathrm{the}\:\mathrm{right}\:\mathrm{handed}\:\mathrm{circle} \\ $$$$\mathrm{will}\:\mathrm{intersect}\:\mathrm{the}\:\mathrm{parabola}\:\mathrm{in}\:\mathrm{exactly}\:\mathrm{1}\:\mathrm{point} \\ $$$$\mathrm{why}\:\mathrm{should}\:\mathrm{there}\:\mathrm{be}\:\mathrm{an}\:\mathrm{upper}\:\mathrm{limit}\:\mathrm{for}\:{r}? \\ $$

Commented by ajfour last updated on 13/Jan/19

you have a Genuine objection Sir.

$${you}\:{have}\:{a}\:{Genuine}\:{objection}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com