Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 52611 by ajfour last updated on 10/Jan/19

Commented by ajfour last updated on 11/Jan/19

Find tensions in both strings if  (i) △ABC be equilateral of side a.  (ii) it be of sides a,b,c.

$${Find}\:{tensions}\:{in}\:{both}\:{strings}\:{if} \\ $$$$\left({i}\right)\:\bigtriangleup{ABC}\:{be}\:{equilateral}\:{of}\:{side}\:{a}. \\ $$$$\left({ii}\right)\:{it}\:{be}\:{of}\:{sides}\:{a},{b},{c}.\:\: \\ $$

Commented by ajfour last updated on 11/Jan/19

mrW Sir, can you help me find  your question in which i had found  height of vertex of pyramid with  lateral edges p,q,r and sides of base  a,b,c ?

$${mrW}\:{Sir},\:{can}\:{you}\:{help}\:{me}\:{find} \\ $$$${your}\:{question}\:{in}\:{which}\:{i}\:{had}\:{found} \\ $$$${height}\:{of}\:{vertex}\:{of}\:{pyramid}\:{with} \\ $$$${lateral}\:{edges}\:{p},{q},{r}\:{and}\:{sides}\:{of}\:{base} \\ $$$${a},{b},{c}\:?\: \\ $$

Commented by mr W last updated on 12/Jan/19

see Q47145, Q47113

$${see}\:{Q}\mathrm{47145},\:{Q}\mathrm{47113} \\ $$

Commented by mr W last updated on 12/Jan/19

thanks for checking sir!

$${thanks}\:{for}\:{checking}\:{sir}! \\ $$

Commented by ajfour last updated on 12/Jan/19

your answer is correct Sir,  for λ=2 , T should be zero.

$${your}\:{answer}\:{is}\:{correct}\:{Sir}, \\ $$$${for}\:\lambda=\mathrm{2}\:,\:{T}\:{should}\:{be}\:{zero}. \\ $$

Answered by mr W last updated on 12/Jan/19

Commented by ajfour last updated on 12/Jan/19

Exceptionally good Sir, SUPERB !

$${Exceptionally}\:{good}\:{Sir},\:\mathcal{SUPERB}\:! \\ $$

Commented by mr W last updated on 13/Jan/19

the general case with different side  lengthes can also be solved in the  same way as here, but very lengthy.  so only the case with equilateral  triangle is treated.  AB=BC=CA=a  AE=BE=l/2  let λ=(l/a)  CD=(((√3)a)/2)  DE=(√(((l/2))^2 −((a/2))^2 ))=((√(l^2 −a^2 ))/2)  in triangle ΔDEC:  ∠D=(π/2)−θ  ∠DEC=π−θ  ∠DCE=θ−((π/2)−θ)=2θ−(π/2)  (((√3)a)/(2 sin (π−θ)))=((√(l^2 −a^2 ))/(2 sin (2θ−(π/2))))  ⇒((√3)/(sin θ))=((√(λ^2 −1))/(−cos 2θ))  ⇒((√3)/(sin θ))=((√(λ^2 −1))/(2 sin^2  θ−1))  ⇒2(√3) sin^2  θ−(√(λ^2 −1)) sin θ−(√3)=0  ⇒sin θ=(((√(λ^2 −1))+(√(λ^2 +23)))/(4(√3)))  ⇒cos θ=((√(2[13−λ^2 −(√((λ^2 −1)(λ^2 +23)))]))/(4(√3)))  T_(DE) =2T((√(l^2 −a^2 ))/l)=2T((√(λ^2 −1))/λ)  T_(DE) =2mg cos θ  ⇒T=mg×((λ cos θ)/(√(λ^2 −1)))=((mgλ(√(2[13−λ^2 −(√((λ^2 −1)(λ^2 +23)))])))/(4(√(3(λ^2 −1)))))  ⇒T=mg(λ/4)(√((2[13−λ^2 −(√((λ^2 −1)(λ^2 +23)))])/(3(λ^2 −1))))  it′s obvious that a<l≤2a, i.e. 1<λ≤2.

$${the}\:{general}\:{case}\:{with}\:{different}\:{side} \\ $$$${lengthes}\:{can}\:{also}\:{be}\:{solved}\:{in}\:{the} \\ $$$${same}\:{way}\:{as}\:{here},\:{but}\:{very}\:{lengthy}. \\ $$$${so}\:{only}\:{the}\:{case}\:{with}\:{equilateral} \\ $$$${triangle}\:{is}\:{treated}. \\ $$$${AB}={BC}={CA}={a} \\ $$$${AE}={BE}={l}/\mathrm{2} \\ $$$${let}\:\lambda=\frac{{l}}{{a}} \\ $$$${CD}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}} \\ $$$${DE}=\sqrt{\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\sqrt{{l}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${in}\:{triangle}\:\Delta{DEC}: \\ $$$$\angle{D}=\frac{\pi}{\mathrm{2}}−\theta \\ $$$$\angle{DEC}=\pi−\theta \\ $$$$\angle{DCE}=\theta−\left(\frac{\pi}{\mathrm{2}}−\theta\right)=\mathrm{2}\theta−\frac{\pi}{\mathrm{2}} \\ $$$$\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}\:\mathrm{sin}\:\left(\pi−\theta\right)}=\frac{\sqrt{{l}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\mathrm{2}\:\mathrm{sin}\:\left(\mathrm{2}\theta−\frac{\pi}{\mathrm{2}}\right)} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{3}}}{\mathrm{sin}\:\theta}=\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}}{−\mathrm{cos}\:\mathrm{2}\theta} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{3}}}{\mathrm{sin}\:\theta}=\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\theta−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}^{\mathrm{2}} \:\theta−\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}\:\mathrm{sin}\:\theta−\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}+\sqrt{\lambda^{\mathrm{2}} +\mathrm{23}}}{\mathrm{4}\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{\sqrt{\mathrm{2}\left[\mathrm{13}−\lambda^{\mathrm{2}} −\sqrt{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} +\mathrm{23}\right)}\right]}}{\mathrm{4}\sqrt{\mathrm{3}}} \\ $$$${T}_{{DE}} =\mathrm{2}{T}\frac{\sqrt{{l}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{{l}}=\mathrm{2}{T}\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}}{\lambda} \\ $$$${T}_{{DE}} =\mathrm{2}{mg}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{T}={mg}×\frac{\lambda\:\mathrm{cos}\:\theta}{\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}}=\frac{{mg}\lambda\sqrt{\mathrm{2}\left[\mathrm{13}−\lambda^{\mathrm{2}} −\sqrt{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} +\mathrm{23}\right)}\right]}}{\mathrm{4}\sqrt{\mathrm{3}\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)}} \\ $$$$\Rightarrow{T}={mg}\frac{\lambda}{\mathrm{4}}\sqrt{\frac{\mathrm{2}\left[\mathrm{13}−\lambda^{\mathrm{2}} −\sqrt{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} +\mathrm{23}\right)}\right]}{\mathrm{3}\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)}} \\ $$$${it}'{s}\:{obvious}\:{that}\:{a}<{l}\leqslant\mathrm{2}{a},\:{i}.{e}.\:\mathrm{1}<\lambda\leqslant\mathrm{2}. \\ $$

Commented by mr W last updated on 12/Jan/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com