Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52900 by MJS last updated on 15/Jan/19

∫_0 ^(π/2) sin x (√(sin 2x)) dx=?  ∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx=?

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{sin}\:{x}\:\sqrt{\mathrm{sin}\:\mathrm{2}{x}}\:{dx}=? \\ $$$$\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:{dx}=? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

I=∫_0 ^(π/2) sinx(√(sin2x)) dx  I=∫_0 ^(π/2) cosx(√(sin2x)) dx  [∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx]  2I=∫_0 ^(π/2) (cosx+sinx)(√(sin2x)) dx  =∫_0 ^(π/2) d(sinx−cosx)(√(1−(1−sin2x))) dx  ∫_0 ^(π/2) d(sinx−cosx)(√(1−(sinx−cosx)^2 )) dx  ∣(((sinx−cosx)(√(1−(sinx−cosx)^2 )))/2)+(1/2)sin^(−1) (((sinx−cosx)/1))∣_0 ^(π/2)   =[{(((1−0)(√(1−(1−0)^2 )))/2)+(1/2)sin^(−1) (((1−0)/1))}−{((0−1(√(1−1)))/2)+(1/2)sin^(−1) (((0−1)/1))}]  =(1/2)×(π/2)−{(1/2)×(((−π)/2))}  =(π/4)+(π/4)=(π/2)  so I=(1/2)×(π/2)=(π/4)  sir pls check...

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sinx}\sqrt{{sin}\mathrm{2}{x}}\:{dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cosx}\sqrt{{sin}\mathrm{2}{x}}\:{dx}\:\:\left[\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{{a}} {f}\left({a}−{x}\right){dx}\right] \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cosx}+{sinx}\right)\sqrt{{sin}\mathrm{2}{x}}\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {d}\left({sinx}−{cosx}\right)\sqrt{\mathrm{1}−\left(\mathrm{1}−{sin}\mathrm{2}{x}\right)}\:{dx} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {d}\left({sinx}−{cosx}\right)\sqrt{\mathrm{1}−\left({sinx}−{cosx}\right)^{\mathrm{2}} }\:{dx} \\ $$$$\mid\frac{\left({sinx}−{cosx}\right)\sqrt{\mathrm{1}−\left({sinx}−{cosx}\right)^{\mathrm{2}} }}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\frac{{sinx}−{cosx}}{\mathrm{1}}\right)\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\left[\left\{\frac{\left(\mathrm{1}−\mathrm{0}\right)\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{0}\right)^{\mathrm{2}} }}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}−\mathrm{0}}{\mathrm{1}}\right)\right\}−\left\{\frac{\mathrm{0}−\mathrm{1}\sqrt{\mathrm{1}−\mathrm{1}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{0}−\mathrm{1}}{\mathrm{1}}\right)\right\}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{2}}−\left\{\frac{\mathrm{1}}{\mathrm{2}}×\left(\frac{−\pi}{\mathrm{2}}\right)\right\} \\ $$$$=\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{4}}=\frac{\pi}{\mathrm{2}} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{I}}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{2}}=\frac{\pi}{\mathrm{4}}\:\:{sir}\:{pls}\:{check}... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

∫_(−(π/4)) ^(π/4)  cosx(√(cos2x)) dx    ∫_(−a) ^a f(x)dx=2×∫_0 ^a f(x)dx [here f(x)=evenfunction]  so∫_((−π)/4) ^(π/4)  cosx(√(cos2x)) dx=2×∫_0 ^(π/4) cosx(√(cos2x)) dx  now using help of graph...

$$\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:{cosx}\sqrt{{cos}\mathrm{2}{x}}\:{dx} \\ $$$$ \\ $$$$\int_{−{a}} ^{{a}} {f}\left({x}\right){dx}=\mathrm{2}×\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}\:\left[{here}\:{f}\left({x}\right)={evenfunction}\right] \\ $$$${so}\int_{\frac{−\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:{cosx}\sqrt{{cos}\mathrm{2}{x}}\:{dx}=\mathrm{2}×\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cosx}\sqrt{{cos}\mathrm{2}{x}}\:{dx} \\ $$$${now}\:{using}\:{help}\:{of}\:{graph}... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

so ∫_((−π)/4) ^(π/4)  cosx(√(cos2x)) dx=area under the curve                                               ≈(2/3)×(π/2)×1=(π/3)  roughly it is a parabola sir...so area  (2/3)ab

$${so}\:\int_{\frac{−\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:{cosx}\sqrt{{cos}\mathrm{2}{x}}\:{dx}={area}\:{under}\:{the}\:{curve} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\approx\frac{\mathrm{2}}{\mathrm{3}}×\frac{\pi}{\mathrm{2}}×\mathrm{1}=\frac{\pi}{\mathrm{3}} \\ $$$${roughly}\:{it}\:{is}\:{a}\:{parabola}\:{sir}...{so}\:{area} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}{ab} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

Answered by mr W last updated on 16/Jan/19

∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx  =2∫_0 ^(π/4) cos x (√(cos 2x)) dx  =2∫_0 ^(π/4) cos x(√(1−2 sin^2  x)) dx  =(√2)∫_0 ^(π/4) (√(1−((√2) sin x)^2 )) d((√2) sin x)        (∫(√(1−t^2 )) dt)  =((√2)/2)[sin^(−1) ((√2) sin x)+((√2) sin x)(√(1−((√2) sin x)^2 ))]_0 ^(π/4)   =((√2)/2)((π/2))  =((π(√2))/4)

$$\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:{dx} \\ $$$$=\mathrm{2}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:{dx} \\ $$$$=\mathrm{2}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\:{x}\sqrt{\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}}\:{dx} \\ $$$$=\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\sqrt{\mathrm{1}−\left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:{x}\right)^{\mathrm{2}} }\:{d}\left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:{x}\right)\:\:\:\:\:\:\:\:\left(\int\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt}\right) \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left[\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:{x}\right)+\left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:{x}\right)\sqrt{\mathrm{1}−\left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:{x}\right)^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$$=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com