Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 52946 by gunawan last updated on 15/Jan/19

∫_( 0) ^(π/2)   log sin 2x dx =

$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\:\mathrm{log}\:\mathrm{sin}\:\mathrm{2}{x}\:{dx}\:= \\ $$

Commented by maxmathsup by imad last updated on 15/Jan/19

let A =∫_0 ^(π/2) log(sin(2x))dx ⇒A=_(2x=t)   (1/2)∫_0 ^π log(sint)dt  ⇒2A =∫_0 ^(π/2) log(sint)dt +∫_(π/2) ^π log(sint)dt but we have proved that  ∫_0 ^(π/2) log(sint)dt =−(π/2)ln(2) also ∫_(π/2) ^π log(sint)dt =_(t =(π/2)+u) ∫_0 ^(π/2) log(sin((π/2)+u))du  =∫_0 ^(π/2) log(cosu)du =−(π/2)ln(2) (result proved) ⇒  2A =−πln(2) ⇒A=−(π/2)ln(2).

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sin}\left(\mathrm{2}{x}\right)\right){dx}\:\Rightarrow{A}=_{\mathrm{2}{x}={t}} \:\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} {log}\left({sint}\right){dt} \\ $$$$\Rightarrow\mathrm{2}{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sint}\right){dt}\:+\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} {log}\left({sint}\right){dt}\:{but}\:{we}\:{have}\:{proved}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sint}\right){dt}\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:{also}\:\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} {log}\left({sint}\right){dt}\:=_{{t}\:=\frac{\pi}{\mathrm{2}}+{u}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sin}\left(\frac{\pi}{\mathrm{2}}+{u}\right)\right){du} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({cosu}\right){du}\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:\left({result}\:{proved}\right)\:\Rightarrow \\ $$$$\mathrm{2}{A}\:=−\pi{ln}\left(\mathrm{2}\right)\:\Rightarrow{A}=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right). \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

t=2x  I=∫_0 ^π lnsint×(dt/2)  I=∫_0 ^π lnsint×(dt/2)  (1/2)∫_0 ^π lnsintdt  [now ∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx when f(2a−x)=f(x)]  so (1/2)∫_0 ^π lnsintdt   [lnsin(π−t)=lnsint]  I=(1/2)×2∫_0 ^(π/2) lnsintdt  I=∫_0 ^(π/2) lnsin((π/2)−t)dt  2I=∫_0 ^(π/2) lnsint+lncost dt(/)p  2I=∫_0 ^(π/2) ln(((2sintcost)/2))dt  =∫_0 ^(π/2) [lnsin2t−ln2]dt  2I=∫_0 ^(π/2) lnsin2tdt−ln2∫_0 ^(π/2) dt  2I=I−ln2×∣t∣_0 ^(π/2)   I=−ln2×(π/2) pls check...

$${t}=\mathrm{2}{x} \\ $$$${I}=\int_{\mathrm{0}} ^{\pi} {lnsint}×\frac{{dt}}{\mathrm{2}} \\ $$$${I}=\int_{\mathrm{0}} ^{\pi} {lnsint}×\frac{{dt}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} {lnsintdt} \\ $$$$\left[{now}\:\int_{\mathrm{0}} ^{\mathrm{2}{a}} {f}\left({x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}\:{when}\:{f}\left(\mathrm{2}{a}−{x}\right)={f}\left({x}\right)\right] \\ $$$${so}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} {lnsintdt}\:\:\:\left[{lnsin}\left(\pi−{t}\right)={lnsint}\right] \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lnsintdt} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lnsin}\left(\frac{\pi}{\mathrm{2}}−{t}\right){dt} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lnsint}+{lncost}\:{dt}\frac{}{}{p} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{2}{sintcost}}{\mathrm{2}}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[{lnsin}\mathrm{2}{t}−{ln}\mathrm{2}\right]{dt} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lnsin}\mathrm{2}{tdt}−{ln}\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {dt} \\ $$$$\mathrm{2}{I}={I}−{ln}\mathrm{2}×\mid{t}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${I}=−{ln}\mathrm{2}×\frac{\pi}{\mathrm{2}}\:{pls}\:{check}... \\ $$

Commented by gunawan last updated on 16/Jan/19

Nice Sir  thank you so much

$$\mathrm{Nice}\:\mathrm{Sir} \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Jan/19

most welcome...

$${most}\:{welcome}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com