Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53212 by Joel578 last updated on 19/Jan/19

Let f(x) = ((2x)/(x^2  + 4))    (a) Find ∫_(−b) ^b  f(x) dx, for b > 0  (b) Determine ∫_(−∞) ^∞  f(x) dx is convergent or not

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+\:\mathrm{4}} \\ $$ $$ \\ $$ $$\left({a}\right)\:\mathrm{Find}\:\underset{−{b}} {\overset{{b}} {\int}}\:{f}\left({x}\right)\:{dx},\:\mathrm{for}\:{b}\:>\:\mathrm{0} \\ $$ $$\left({b}\right)\:\mathrm{Determine}\:\underset{−\infty} {\overset{\infty} {\int}}\:{f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{not} \\ $$

Commented byJoel578 last updated on 19/Jan/19

(a) f(x) = ((2x)/(x^2  + 4))           f(−x) = ((2(−x))/((−x)^2  + 4)) = −((2x)/(x^2  + 4)) = −f(x)           f(x) is an odd function           ⇒ ∫_(−b) ^b  f(x) dx = 0

$$\left({a}\right)\:{f}\left({x}\right)\:=\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+\:\mathrm{4}} \\ $$ $$\:\:\:\:\:\:\:\:\:{f}\left(−{x}\right)\:=\:\frac{\mathrm{2}\left(−{x}\right)}{\left(−{x}\right)^{\mathrm{2}} \:+\:\mathrm{4}}\:=\:−\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+\:\mathrm{4}}\:=\:−{f}\left({x}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{function} \\ $$ $$\:\:\:\:\:\:\:\:\:\Rightarrow\:\underset{−{b}} {\overset{{b}} {\int}}\:{f}\left({x}\right)\:{dx}\:=\:\mathrm{0} \\ $$

Commented byJoel578 last updated on 19/Jan/19

Please help with part (b)

$$\mathrm{Please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{part}\:\left({b}\right) \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

1.((2x)/(x^2 +4)) is odd function  because f(−x)=−f(x)  2.the intregal ∫_(−b) ^b ((2x)/(x^2 +4))dx=∫_(−b) ^0 ((2x)/(x^2 +4))dx+∫_0 ^b ((2x)/(x^2 +4))dx  I=I_1 +I_2   though I_1 =I_2  but I_1 represent area bound by  curve ((2x)/(4+x^2 ))  from  x=−b  to x=0  but that area  is below x axis so  negetive area .  I_2  represent the area bound by the curve ((2x)/(4+x^2 ))  from x=0  to x=b  above x axis so +ve area  hence I_1 +I_2 =0  this is my opinion let others comment...

$$\mathrm{1}.\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{4}}\:{is}\:{odd}\:{function}\:\:{because}\:{f}\left(−{x}\right)=−{f}\left({x}\right) \\ $$ $$\mathrm{2}.{the}\:{intregal}\:\int_{−{b}} ^{{b}} \frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{4}}{dx}=\int_{−{b}} ^{\mathrm{0}} \frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{4}}{dx}+\int_{\mathrm{0}} ^{{b}} \frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$ $${I}={I}_{\mathrm{1}} +{I}_{\mathrm{2}} \\ $$ $${though}\:{I}_{\mathrm{1}} ={I}_{\mathrm{2}} \:{but}\:{I}_{\mathrm{1}} {represent}\:{area}\:{bound}\:{by} \\ $$ $${curve}\:\frac{\mathrm{2}{x}}{\mathrm{4}+{x}^{\mathrm{2}} }\:\:{from}\:\:{x}=−{b}\:\:{to}\:{x}=\mathrm{0}\:\:{but}\:{that}\:{area} \\ $$ $${is}\:{below}\:{x}\:{axis}\:{so}\:\:{negetive}\:{area}\:. \\ $$ $${I}_{\mathrm{2}} \:{represent}\:{the}\:{area}\:{bound}\:{by}\:{the}\:{curve}\:\frac{\mathrm{2}{x}}{\mathrm{4}+{x}^{\mathrm{2}} } \\ $$ $${from}\:{x}=\mathrm{0}\:\:{to}\:{x}={b}\:\:{above}\:{x}\:{axis}\:{so}\:+{ve}\:{area} \\ $$ $${hence}\:{I}_{\mathrm{1}} +{I}_{\mathrm{2}} =\mathrm{0} \\ $$ $${this}\:{is}\:{my}\:{opinion}\:{let}\:{others}\:{comment}... \\ $$ $$ \\ $$ $$ \\ $$

Commented byafachri last updated on 19/Jan/19

∫_(−b) ^b   ((2x)/(x^2 + 4)) dx  =  ∫_(−b) ^0  ((2x dx)/(x^2 + 4)) + ∫_0 ^b   ((2x dx)/(x^2 + 4))                                 = ln (b^2 + 4) + ln (b^2 + 4)                                 = 2 ln (b^2 + 4)

$$\underset{−{b}} {\overset{{b}} {\int}}\:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\:\mathrm{4}}\:{dx}\:\:=\:\:\underset{−{b}} {\overset{\mathrm{0}} {\int}}\:\frac{\mathrm{2}{x}\:{dx}}{{x}^{\mathrm{2}} +\:\mathrm{4}}\:+\:\underset{\mathrm{0}} {\overset{{b}} {\int}}\:\:\frac{\mathrm{2}{x}\:{dx}}{{x}^{\mathrm{2}} +\:\mathrm{4}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{ln}\:\left({b}^{\mathrm{2}} +\:\mathrm{4}\right)\:+\:\mathrm{ln}\:\left({b}^{\mathrm{2}} +\:\mathrm{4}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2}\:\mathrm{ln}\:\left({b}^{\mathrm{2}} +\:\mathrm{4}\right) \\ $$

Commented byafachri last updated on 19/Jan/19

Commented byafachri last updated on 19/Jan/19

in my opinion to the part B, we can define  ∫_(−∞) ^∞ f(x) is convergent or not by check the  limit. it′s divergent while lim_(x→∞)  f(x) = ∞.  lim_(x→∞)    ((2x)/(x^2 + 4)) = lim_(x→∞)   ((x^2 ((2/x)))/(x^2 (1 + (4/x^2 ))))                                    = lim_(x→∞)   (0/(1 + 0))                                   = 0  f(x) = ((2x)/(x^2 + 4))   converges so ∫_(−∞) ^∞ f(x) does.

$$\mathrm{in}\:\mathrm{my}\:\mathrm{opinion}\:\mathrm{to}\:\mathrm{the}\:\mathrm{part}\:\mathrm{B},\:\mathrm{we}\:\mathrm{can}\:\mathrm{define} \\ $$ $$\underset{−\infty} {\overset{\infty} {\int}}{f}\left({x}\right)\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{not}\:\mathrm{by}\:\mathrm{check}\:\mathrm{the} \\ $$ $$\mathrm{limit}.\:\mathrm{it}'\mathrm{s}\:\mathrm{divergent}\:\mathrm{while}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\infty. \\ $$ $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\:\mathrm{4}}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{{x}^{\mathrm{2}} \left(\frac{\mathrm{2}}{{x}}\right)}{{x}^{\mathrm{2}} \left(\mathrm{1}\:+\:\frac{\mathrm{4}}{{x}^{\mathrm{2}} }\right)} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{0}}{\mathrm{1}\:+\:\mathrm{0}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{0} \\ $$ $${f}\left({x}\right)\:=\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\:\mathrm{4}}\:\:\:\mathrm{converges}\:\mathrm{so}\:\underset{−\infty} {\overset{\infty} {\int}}{f}\left({x}\right)\:\mathrm{does}. \\ $$

Commented byafachri last updated on 19/Jan/19

But Mr Tanmay,   ∫_(−b) ^0  f(x) + ∫_0 ^b  = F(x)∣_(−b) ^0   +   F(x)∣_0 ^b                                 = (F(0) − F(−b))  +  (F(b) − F(0))                                = F(b) + F(b)                                = 2 F(b)

$$\mathrm{But}\:\mathrm{Mr}\:\mathrm{Tanmay},\: \\ $$ $$\underset{−{b}} {\overset{\mathrm{0}} {\int}}\:{f}\left({x}\right)\:+\:\underset{\mathrm{0}} {\overset{{b}} {\int}}\:=\:\mathrm{F}\left({x}\right)\underset{−{b}} {\overset{\mathrm{0}} {\mid}}\:\:+\:\:\:\mathrm{F}\left({x}\right)\underset{\mathrm{0}} {\overset{{b}} {\mid}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\mathrm{F}\left(\mathrm{0}\right)\:−\:\mathrm{F}\left(−{b}\right)\right)\:\:+\:\:\left(\mathrm{F}\left({b}\right)\:−\:\mathrm{F}\left(\mathrm{0}\right)\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{F}\left({b}\right)\:+\:\mathrm{F}\left({b}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2}\:\mathrm{F}\left({b}\right) \\ $$ $$ \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

intregal value is same...but from[graph  one  area is above x axis another below xsis so odd function...

$${intregal}\:{value}\:{is}\:{same}...{but}\:{from}\left[{graph}\:\:{one}\right. \\ $$ $${area}\:{is}\:{above}\:{x}\:{axis}\:{another}\:{below}\:{xsis}\:{so}\:{odd}\:{function}... \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

Commented byafachri last updated on 19/Jan/19

thank you Mr Damian and all of you Sir  who have corrected me for my mistake.   what an interesting forum here. now i′m  understand it.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Mr}\:\mathrm{Damian}\:\mathrm{and}\:\mathrm{all}\:\mathrm{of}\:\mathrm{you}\:\mathrm{Sir} \\ $$ $$\mathrm{who}\:\mathrm{have}\:\mathrm{corrected}\:\mathrm{me}\:\mathrm{for}\:\mathrm{my}\:\mathrm{mistake}.\: \\ $$ $$\mathrm{what}\:\mathrm{an}\:\mathrm{interesting}\:\mathrm{forum}\:\mathrm{here}.\:\mathrm{now}\:\mathrm{i}'\mathrm{m} \\ $$ $$\mathrm{understand}\:\mathrm{it}. \\ $$

Commented byafachri last updated on 19/Jan/19

Yes Mr Tanmay. but what i′m questioning  is why ∫_(−b) ^b   ((2x)/(x^2 + 4))  = 0 ? Well, ∫_(−b) ^b   ((2x)/(x^2 + 4)) states  the area of the function through absis.   i hope you don′t mind for my situation   Mr Tanmay.

$$\mathrm{Yes}\:\mathrm{Mr}\:\mathrm{Tanmay}.\:\mathrm{but}\:\mathrm{what}\:\mathrm{i}'\mathrm{m}\:\mathrm{questioning} \\ $$ $$\mathrm{is}\:\mathrm{why}\:\underset{−{b}} {\overset{{b}} {\int}}\:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\:\mathrm{4}}\:\:=\:\mathrm{0}\:?\:\mathrm{Well},\:\underset{−{b}} {\overset{{b}} {\int}}\:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\:\mathrm{4}}\:\mathrm{states} \\ $$ $$\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{through}\:\mathrm{absis}.\: \\ $$ $$\mathrm{i}\:\mathrm{hope}\:\mathrm{you}\:\mathrm{don}'\mathrm{t}\:\mathrm{mind}\:\mathrm{for}\:\mathrm{my}\:\mathrm{situation}\: \\ $$ $$\mathrm{Mr}\:\mathrm{Tanmay}. \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

wait...let assume b=1000  then find ∫_(−1000) ^(1000) ((2x)/(4+x^2 ))dx using graph app..

$${wait}...{let}\:{assume}\:{b}=\mathrm{1000} \\ $$ $${then}\:{find}\:\int_{−\mathrm{1000}} ^{\mathrm{1000}} \frac{\mathrm{2}{x}}{\mathrm{4}+{x}^{\mathrm{2}} }{dx}\:{using}\:{graph}\:{app}.. \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

Commented byafachri last updated on 19/Jan/19

Yes Mr Tanmay. Done. Thank You  so much. Really appreciate your time  Mr Tanmay

$$\mathrm{Yes}\:\mathrm{Mr}\:\mathrm{Tanmay}.\:\mathrm{Done}.\:\mathrm{Thank}\:\mathrm{You} \\ $$ $$\mathrm{so}\:\mathrm{much}.\:\mathrm{Really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time} \\ $$ $$\mathrm{Mr}\:\mathrm{Tanmay} \\ $$

Commented byafachri last updated on 19/Jan/19

Commented byJDamian last updated on 19/Jan/19

it is wrong. f(x) is odd, but F(x) is even. Then  F(b)=F(−b)⇒F(b)−F(−b)=F(b)−F(b)=0    this comment was intended for an afrachi′s answer.

$${it}\:{is}\:{wrong}.\:{f}\left({x}\right)\:{is}\:{odd},\:{but}\:{F}\left({x}\right)\:{is}\:{even}.\:{Then} \\ $$ $${F}\left({b}\right)={F}\left(−{b}\right)\Rightarrow{F}\left({b}\right)−{F}\left(−{b}\right)={F}\left({b}\right)−{F}\left({b}\right)=\mathrm{0} \\ $$ $$ \\ $$ $${this}\:{comment}\:{was}\:{intended}\:{for}\:{an}\:{afrachi}'{s}\:{answer}. \\ $$

Commented byJoel578 last updated on 20/Jan/19

Thanks you Sir afachri, tanmay, JDamian for the answers.  Actually I′m agree with Sir tanmay. That′s   what I have been taught in Calculus 1.  There is a difference between a definite integral  and a definite integral as an area

$$\mathrm{Thanks}\:\mathrm{you}\:\mathrm{Sir}\:\mathrm{afachri},\:\mathrm{tanmay},\:\mathrm{JDamian}\:\mathrm{for}\:\mathrm{the}\:\mathrm{answers}. \\ $$ $$\mathrm{Actually}\:\mathrm{I}'\mathrm{m}\:\mathrm{agree}\:\mathrm{with}\:\mathrm{Sir}\:\mathrm{tanmay}.\:\mathrm{That}'\mathrm{s}\: \\ $$ $$\mathrm{what}\:\mathrm{I}\:\mathrm{have}\:\mathrm{been}\:\mathrm{taught}\:\mathrm{in}\:\mathrm{Calculus}\:\mathrm{1}. \\ $$ $$\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{difference}\:\mathrm{between}\:\mathrm{a}\:\mathrm{definite}\:\mathrm{integral} \\ $$ $$\mathrm{and}\:\mathrm{a}\:\mathrm{definite}\:\mathrm{integral}\:\mathrm{as}\:\mathrm{an}\:\mathrm{area} \\ $$

Commented bymaxmathsup by imad last updated on 23/Jan/19

for all  odd function  integrable on ]−a,a[ a∈R^−    we have   ∫_(−a) ^a f(x)dx =0.

$$\left.{for}\:{all}\:\:{odd}\:{function}\:\:{integrable}\:{on}\:\right]−{a},{a}\left[\:{a}\in\overset{−} {{R}}\:\:\:{we}\:{have}\:\right. \\ $$ $$\int_{−{a}} ^{{a}} {f}\left({x}\right){dx}\:=\mathrm{0}. \\ $$

Answered by MJS last updated on 20/Jan/19

(b) is already done after (a)  ∫((2x)/(x^2 +4))dx=ln (x^2 +4) =F(x)  ⇒ g(b)=F(b)−F(−b)=0  lim_(b→∞) g(b)=lim_(b→∞) 0 =0

$$\left(\mathrm{b}\right)\:\mathrm{is}\:\mathrm{already}\:\mathrm{done}\:\mathrm{after}\:\left(\mathrm{a}\right) \\ $$ $$\int\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{4}}{dx}=\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{4}\right)\:={F}\left({x}\right) \\ $$ $$\Rightarrow\:{g}\left({b}\right)={F}\left({b}\right)−{F}\left(−{b}\right)=\mathrm{0} \\ $$ $$\underset{{b}\rightarrow\infty} {\mathrm{lim}}{g}\left({b}\right)=\underset{{b}\rightarrow\infty} {\mathrm{lim}0}\:=\mathrm{0} \\ $$

Commented byJoel578 last updated on 20/Jan/19

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jan/19

b) it is my opinion...  ∫_(−∞) ^(+∞) f(x)dx  lim_(h→−∞) ∫_h ^0  f(x) dx=−ve A  lim_(k→+∞)  ∫_0 ^k f(x)dx=+ve A  so ∫_(−∞) ^(+∞) ((2x)/(4+x^2 ))dx=0  anoother way...  x=2tanθ  dx=2sec^2 θdθ  ∫_(−(π/2)) ^(π/2) ((2×2tanθ×2sec^2 θdθ)/(4+4tan^2 θ))  =∫_(−(π/2)) ^(π/2)  ((8tanθsec^2 θ)/(4sec^2 θ))dθ  =2∣lnsecθ∣_(−(π/2)) ^(π/2)   =−2∣lncosθ∣_(−(π/2)) ^(π/2)   =−2[lncos((π/2))−lncos(−(π/2))]  =0  it is my opinion...let others comment...

$$\left.{b}\right)\:{it}\:{is}\:{my}\:{opinion}... \\ $$ $$\int_{−\infty} ^{+\infty} {f}\left({x}\right){dx} \\ $$ $$\underset{{h}\rightarrow−\infty} {\mathrm{lim}}\int_{{h}} ^{\mathrm{0}} \:{f}\left({x}\right)\:{dx}=−{ve}\:{A} \\ $$ $$\underset{{k}\rightarrow+\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{{k}} {f}\left({x}\right){dx}=+{ve}\:{A} \\ $$ $${so}\:\int_{−\infty} ^{+\infty} \frac{\mathrm{2}{x}}{\mathrm{4}+{x}^{\mathrm{2}} }{dx}=\mathrm{0} \\ $$ $${anoother}\:{way}... \\ $$ $${x}=\mathrm{2}{tan}\theta\:\:{dx}=\mathrm{2}{sec}^{\mathrm{2}} \theta{d}\theta \\ $$ $$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}×\mathrm{2}{tan}\theta×\mathrm{2}{sec}^{\mathrm{2}} \theta{d}\theta}{\mathrm{4}+\mathrm{4}{tan}^{\mathrm{2}} \theta} \\ $$ $$=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{8}{tan}\theta{sec}^{\mathrm{2}} \theta}{\mathrm{4}{sec}^{\mathrm{2}} \theta}{d}\theta \\ $$ $$=\mathrm{2}\mid{lnsec}\theta\mid_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$ $$=−\mathrm{2}\mid{lncos}\theta\mid_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$ $$=−\mathrm{2}\left[{lncos}\left(\frac{\pi}{\mathrm{2}}\right)−{lncos}\left(−\frac{\pi}{\mathrm{2}}\right)\right] \\ $$ $$=\mathrm{0} \\ $$ $${it}\:{is}\:{my}\:{opinion}...{let}\:{others}\:{comment}... \\ $$

Commented byJoel578 last updated on 20/Jan/19

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com