Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 53530 by MJS last updated on 23/Jan/19

Commented by MJS last updated on 23/Jan/19

I found a solution to question 53168 by  Sir Aifour

$$\mathrm{I}\:\mathrm{found}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{question}\:\mathrm{53168}\:\mathrm{by} \\ $$$$\mathrm{Sir}\:\mathrm{Aifour} \\ $$

Answered by MJS last updated on 23/Jan/19

I changed the setup after some failed attempts  I put a=1; b=a^2 ; (1/3)<b≤1 ⇔ ((√3)/3)<a≤1  to go on with b leads to more complications  because of terms with (√b^(2n−1) ); the borders  for a make sure both circles are within the  triangle (we could allow (1/3)<b<3 leading to  symmetric results)  M= (((−1)),(0) )  N= ((a^2 ),(0) )  the given circles  (x+1)^2 +y^2 =1  (x−a^2 )^2 +y^2 =a^4   now it′s possible to get the equations of the  lines BC, CA & AB:  BC: y=((1−a^2 )/(2a))x−a  CA: ((a^2 +2(√3)a−1)/((√3)a^2 −2a−(√3)))x−((a^2 ((√3)a+1))/(a−(√3)))  AB: −(((√3)a^2 −6a−(√3))/(3a^2 +2(√3)a−3))x+(((√3)a+3)/(3a−(√3)))  A= (((((a−1)(a+1)(3a^2 +4(√3)a+3))/(2(a^2 +1)))),((−((3(√3)a^5 −15a^4 −14(√3)a^3 +6a^2 +7(√3)a−3)/(2(3a−(√3))(a^2 +1))))) )  B= (((−((2a(a+(√3)))/(a^2 +1)))),((((√3)((√3)a−3)((√3)a+1))/(3(a^2 +1)))) )  C= ((((2a^2 ((√3)a+1))/(a^2 +1))),((−((a^2 ((√3)a^2 +2a−(√3)))/(a^2 +1)))) )            [the roots of 3(√3)a^5 −15a^4 −14(√3)a^3 +6a^2 +7(√3)a−3:              a_1 =((√3)/3); a_(2, 3) =((√3)/3)(1+(√7)±(√(5+2(√7)))); a_(4, 5) =((√3)/3)(1−(√7)±(√(−5+2(√7)))i)]  the side of the triangle  s=(√3)a^2 +2a+(√3)  the searched circle can be found like this  P= ((p),(q) )  (x−p)^2 +(y−q)^2 =r^2   steps 1 & 2: intersect with the given circles  so that there′s exactly one common point  with each of them ⇒ p, q  step 3: A∈circle ⇒ r  these steps lead to 2 solutions, one of the  found circles includes the given circles.  the hardest work is to simplify the polynomes  I spent a day searching for zeros...  p=−((a^2 −1)/(a^2 +1))r  q=((2a(√(r^2 +(a^2 +1)r)))/(a^2 +1))  r=−((9(a^2 +(((√3)/6)+((√(11))/2))a+1)^2 (a^2 +(((√3)/6)−((√(11))/2))a+1)^2 )/((a−(√3))(a+(√3))((√3)a−1)((√3)a+1)(3a^2 +2(√3)a+3)))  isn′t it of a strange but great beauty?

$$\mathrm{I}\:\mathrm{changed}\:\mathrm{the}\:\mathrm{setup}\:\mathrm{after}\:\mathrm{some}\:\mathrm{failed}\:\mathrm{attempts} \\ $$$$\mathrm{I}\:\mathrm{put}\:{a}=\mathrm{1};\:{b}={a}^{\mathrm{2}} ;\:\frac{\mathrm{1}}{\mathrm{3}}<{b}\leqslant\mathrm{1}\:\Leftrightarrow\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}<{a}\leqslant\mathrm{1} \\ $$$$\mathrm{to}\:\mathrm{go}\:\mathrm{on}\:\mathrm{with}\:{b}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{more}\:\mathrm{complications} \\ $$$$\mathrm{because}\:\mathrm{of}\:\mathrm{terms}\:\mathrm{with}\:\sqrt{{b}^{\mathrm{2}{n}−\mathrm{1}} };\:\mathrm{the}\:\mathrm{borders} \\ $$$$\mathrm{for}\:{a}\:\mathrm{make}\:\mathrm{sure}\:\mathrm{both}\:\mathrm{circles}\:\mathrm{are}\:\mathrm{within}\:\mathrm{the} \\ $$$$\mathrm{triangle}\:\left(\mathrm{we}\:\mathrm{could}\:\mathrm{allow}\:\frac{\mathrm{1}}{\mathrm{3}}<{b}<\mathrm{3}\:\mathrm{leading}\:\mathrm{to}\right. \\ $$$$\left.\mathrm{symmetric}\:\mathrm{results}\right) \\ $$$${M}=\begin{pmatrix}{−\mathrm{1}}\\{\mathrm{0}}\end{pmatrix}\:\:{N}=\begin{pmatrix}{{a}^{\mathrm{2}} }\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{the}\:\mathrm{given}\:\mathrm{circles} \\ $$$$\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\left({x}−{a}^{\mathrm{2}} \right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{4}} \\ $$$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{lines}\:{BC},\:{CA}\:\&\:{AB}: \\ $$$${BC}:\:{y}=\frac{\mathrm{1}−{a}^{\mathrm{2}} }{\mathrm{2}{a}}{x}−{a} \\ $$$${CA}:\:\frac{{a}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}{a}−\mathrm{1}}{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} −\mathrm{2}{a}−\sqrt{\mathrm{3}}}{x}−\frac{{a}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}{a}+\mathrm{1}\right)}{{a}−\sqrt{\mathrm{3}}} \\ $$$${AB}:\:−\frac{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} −\mathrm{6}{a}−\sqrt{\mathrm{3}}}{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}{a}−\mathrm{3}}{x}+\frac{\sqrt{\mathrm{3}}{a}+\mathrm{3}}{\mathrm{3}{a}−\sqrt{\mathrm{3}}} \\ $$$${A}=\begin{pmatrix}{\frac{\left({a}−\mathrm{1}\right)\left({a}+\mathrm{1}\right)\left(\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}{a}+\mathrm{3}\right)}{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}\\{−\frac{\mathrm{3}\sqrt{\mathrm{3}}{a}^{\mathrm{5}} −\mathrm{15}{a}^{\mathrm{4}} −\mathrm{14}\sqrt{\mathrm{3}}{a}^{\mathrm{3}} +\mathrm{6}{a}^{\mathrm{2}} +\mathrm{7}\sqrt{\mathrm{3}}{a}−\mathrm{3}}{\mathrm{2}\left(\mathrm{3}{a}−\sqrt{\mathrm{3}}\right)\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}\end{pmatrix} \\ $$$${B}=\begin{pmatrix}{−\frac{\mathrm{2}{a}\left({a}+\sqrt{\mathrm{3}}\right)}{{a}^{\mathrm{2}} +\mathrm{1}}}\\{\frac{\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}{a}−\mathrm{3}\right)\left(\sqrt{\mathrm{3}}{a}+\mathrm{1}\right)}{\mathrm{3}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}\end{pmatrix} \\ $$$${C}=\begin{pmatrix}{\frac{\mathrm{2}{a}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}{a}+\mathrm{1}\right)}{{a}^{\mathrm{2}} +\mathrm{1}}}\\{−\frac{{a}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}{a}^{\mathrm{2}} +\mathrm{2}{a}−\sqrt{\mathrm{3}}\right)}{{a}^{\mathrm{2}} +\mathrm{1}}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{3}\sqrt{\mathrm{3}}{a}^{\mathrm{5}} −\mathrm{15}{a}^{\mathrm{4}} −\mathrm{14}\sqrt{\mathrm{3}}{a}^{\mathrm{3}} +\mathrm{6}{a}^{\mathrm{2}} +\mathrm{7}\sqrt{\mathrm{3}}{a}−\mathrm{3}:\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:{a}_{\mathrm{1}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{3}};\:{a}_{\mathrm{2},\:\mathrm{3}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\mathrm{1}+\sqrt{\mathrm{7}}\pm\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{7}}}\right);\:{a}_{\mathrm{4},\:\mathrm{5}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\mathrm{1}−\sqrt{\mathrm{7}}\pm\sqrt{−\mathrm{5}+\mathrm{2}\sqrt{\mathrm{7}}}\mathrm{i}\right)\right] \\ $$$$\mathrm{the}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$${s}=\sqrt{\mathrm{3}}{a}^{\mathrm{2}} +\mathrm{2}{a}+\sqrt{\mathrm{3}} \\ $$$$\mathrm{the}\:\mathrm{searched}\:\mathrm{circle}\:\mathrm{can}\:\mathrm{be}\:\mathrm{found}\:\mathrm{like}\:\mathrm{this} \\ $$$${P}=\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix} \\ $$$$\left({x}−{p}\right)^{\mathrm{2}} +\left({y}−{q}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{steps}\:\mathrm{1}\:\&\:\mathrm{2}:\:\mathrm{intersect}\:\mathrm{with}\:\mathrm{the}\:\mathrm{given}\:\mathrm{circles} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{there}'\mathrm{s}\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{common}\:\mathrm{point} \\ $$$$\mathrm{with}\:\mathrm{each}\:\mathrm{of}\:\mathrm{them}\:\Rightarrow\:{p},\:{q} \\ $$$$\mathrm{step}\:\mathrm{3}:\:{A}\in\mathrm{circle}\:\Rightarrow\:{r} \\ $$$$\mathrm{these}\:\mathrm{steps}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{2}\:\mathrm{solutions},\:\mathrm{one}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{found}\:\mathrm{circles}\:{includes}\:\mathrm{the}\:\mathrm{given}\:\mathrm{circles}. \\ $$$$\mathrm{the}\:\mathrm{hardest}\:\mathrm{work}\:\mathrm{is}\:\mathrm{to}\:\mathrm{simplify}\:\mathrm{the}\:\mathrm{polynomes} \\ $$$$\mathrm{I}\:\mathrm{spent}\:\mathrm{a}\:\mathrm{day}\:\mathrm{searching}\:\mathrm{for}\:\mathrm{zeros}... \\ $$$${p}=−\frac{{a}^{\mathrm{2}} −\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}}{r} \\ $$$${q}=\frac{\mathrm{2}{a}\sqrt{{r}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +\mathrm{1}\right){r}}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${r}=−\frac{\mathrm{9}\left({a}^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}+\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right){a}+\mathrm{1}\right)^{\mathrm{2}} \left({a}^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}−\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right){a}+\mathrm{1}\right)^{\mathrm{2}} }{\left({a}−\sqrt{\mathrm{3}}\right)\left({a}+\sqrt{\mathrm{3}}\right)\left(\sqrt{\mathrm{3}}{a}−\mathrm{1}\right)\left(\sqrt{\mathrm{3}}{a}+\mathrm{1}\right)\left(\mathrm{3}{a}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}{a}+\mathrm{3}\right)} \\ $$$$\mathrm{isn}'\mathrm{t}\:\mathrm{it}\:\mathrm{of}\:\mathrm{a}\:\mathrm{strange}\:\mathrm{but}\:\mathrm{great}\:\mathrm{beauty}? \\ $$

Commented by ajfour last updated on 23/Jan/19

i think, its just a quadratic in R; only   quite complicated. thanks Sir.

$${i}\:{think},\:{its}\:{just}\:{a}\:{quadratic}\:{in}\:{R};\:{only}\: \\ $$$${quite}\:{complicated}.\:{thanks}\:{Sir}. \\ $$

Commented by MJS last updated on 23/Jan/19

it is indeed quadratic in r (your R) but it′s  very complicated to solve because it′s degree  12 in a and we must constantly find zeros  to shorten huge fractions. in the end  everything is fine. even the root in my  q vanishes because it′s (√(term(a)^2 ))... I′ll  post later

$$\mathrm{it}\:\mathrm{is}\:\mathrm{indeed}\:\mathrm{quadratic}\:\mathrm{in}\:{r}\:\left(\mathrm{your}\:{R}\right)\:\mathrm{but}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{very}\:\mathrm{complicated}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{because}\:\mathrm{it}'\mathrm{s}\:\mathrm{degree} \\ $$$$\mathrm{12}\:\mathrm{in}\:{a}\:\mathrm{and}\:\mathrm{we}\:\mathrm{must}\:\mathrm{constantly}\:\mathrm{find}\:\mathrm{zeros} \\ $$$$\mathrm{to}\:\mathrm{shorten}\:\mathrm{huge}\:\mathrm{fractions}.\:\mathrm{in}\:\mathrm{the}\:\mathrm{end} \\ $$$$\mathrm{everything}\:\mathrm{is}\:\mathrm{fine}.\:\mathrm{even}\:\mathrm{the}\:\mathrm{root}\:\mathrm{in}\:\mathrm{my} \\ $$$${q}\:\mathrm{vanishes}\:\mathrm{because}\:\mathrm{it}'\mathrm{s}\:\sqrt{{term}\left({a}\right)^{\mathrm{2}} }...\:\mathrm{I}'\mathrm{ll} \\ $$$$\mathrm{post}\:\mathrm{later} \\ $$

Answered by ajfour last updated on 23/Jan/19

let M be origin. x-axis ∥ BC   s=(√3)(a+b)+2(√(ab))  Let  P(h,k), N(2(√(ab)), b−a)  A((s/2)−a(√3) , ((s(√3))/2)−a).    h^2 +k^2 = (a+R)^2        ...(i)    (h−2(√(ab)))^2 +(k−b+a)^2 =(b+R)^2    ..(ii)    (h−(s/2)+a(√3))^2 +(k−((s(√3))/2)+a)^2 =R^2    ..(iii)  (ii)−(i), (iii)−(i) gives     Ah+Bk= (b−a)(a+b+R)      Ch+Dk = −a(2a+R)  A, B, C,D contains only a and b.  Upon finding (h,k) we use eq.(i)  If i let  (b/a)=t^2 , (h/a)=p, (k/a)=q,(R/a)=ρ  then (s/(2a))=(√3)(1+t^2 )+2t = u  p^2 +q^2 =(1+ρ)^2       ...(I)  (p−2t)^2 +(q−t^2 +1)^2 =(t^2 +ρ)^2    ...(II)  (p−u+(√3))^2 +(q−u(√3)+1)^2 =ρ^2     ..(III)  (II)−(I)  & (III)−(I)  give  −4tp+4t^2 −2(t^2 −1)q+(t^2 −1)^2 =(t^2 +1)(1+t^2 +2ρ)  &  −2(u−(√3))p+(u−(√3))^2 −2(u(√3)−1)q         +(u(√3)−1)^2 =−(2ρ+1)

$${let}\:{M}\:{be}\:{origin}.\:{x}-{axis}\:\parallel\:{BC} \\ $$$$\:{s}=\sqrt{\mathrm{3}}\left({a}+{b}\right)+\mathrm{2}\sqrt{{ab}} \\ $$$${Let}\:\:{P}\left({h},{k}\right),\:{N}\left(\mathrm{2}\sqrt{{ab}},\:{b}−{a}\right) \\ $$$${A}\left(\frac{{s}}{\mathrm{2}}−{a}\sqrt{\mathrm{3}}\:,\:\frac{{s}\sqrt{\mathrm{3}}}{\mathrm{2}}−{a}\right). \\ $$$$\:\:{h}^{\mathrm{2}} +{k}^{\mathrm{2}} =\:\left({a}+{R}\right)^{\mathrm{2}} \:\:\:\:\:\:\:...\left({i}\right) \\ $$$$\:\:\left({h}−\mathrm{2}\sqrt{{ab}}\right)^{\mathrm{2}} +\left({k}−{b}+{a}\right)^{\mathrm{2}} =\left({b}+{R}\right)^{\mathrm{2}} \:\:\:..\left({ii}\right) \\ $$$$\:\:\left({h}−\frac{{s}}{\mathrm{2}}+{a}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} +\left({k}−\frac{{s}\sqrt{\mathrm{3}}}{\mathrm{2}}+{a}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:\:..\left({iii}\right) \\ $$$$\left({ii}\right)−\left({i}\right),\:\left({iii}\right)−\left({i}\right)\:{gives} \\ $$$$\:\:\:{Ah}+{Bk}=\:\left({b}−{a}\right)\left({a}+{b}+{R}\right) \\ $$$$\:\:\:\:{Ch}+{Dk}\:=\:−{a}\left(\mathrm{2}{a}+{R}\right) \\ $$$${A},\:{B},\:{C},{D}\:{contains}\:{only}\:{a}\:{and}\:{b}. \\ $$$${Upon}\:{finding}\:\left({h},{k}\right)\:{we}\:{use}\:{eq}.\left({i}\right) \\ $$$${If}\:{i}\:{let}\:\:\frac{{b}}{{a}}={t}^{\mathrm{2}} ,\:\frac{{h}}{{a}}={p},\:\frac{{k}}{{a}}={q},\frac{{R}}{{a}}=\rho \\ $$$${then}\:\frac{{s}}{\mathrm{2}{a}}=\sqrt{\mathrm{3}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)+\mathrm{2}{t}\:=\:{u} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\left(\mathrm{1}+\rho\right)^{\mathrm{2}} \:\:\:\:\:\:...\left({I}\right) \\ $$$$\left({p}−\mathrm{2}{t}\right)^{\mathrm{2}} +\left({q}−{t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} =\left({t}^{\mathrm{2}} +\rho\right)^{\mathrm{2}} \:\:\:...\left({II}\right) \\ $$$$\left({p}−{u}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} +\left({q}−{u}\sqrt{\mathrm{3}}+\mathrm{1}\right)^{\mathrm{2}} =\rho^{\mathrm{2}} \:\:\:\:..\left({III}\right) \\ $$$$\left({II}\right)−\left({I}\right)\:\:\&\:\left({III}\right)−\left({I}\right)\:\:{give} \\ $$$$−\mathrm{4}{tp}+\mathrm{4}{t}^{\mathrm{2}} −\mathrm{2}\left({t}^{\mathrm{2}} −\mathrm{1}\right){q}+\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} =\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}\rho\right) \\ $$$$\& \\ $$$$−\mathrm{2}\left({u}−\sqrt{\mathrm{3}}\right){p}+\left({u}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{2}\left({u}\sqrt{\mathrm{3}}−\mathrm{1}\right){q} \\ $$$$\:\:\:\:\:\:\:+\left({u}\sqrt{\mathrm{3}}−\mathrm{1}\right)^{\mathrm{2}} =−\left(\mathrm{2}\rho+\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com