Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 53696 by gunawan last updated on 25/Jan/19

Let I_n =∫_( 0) ^(π/4)  tan^n x dx, (n>1 and n∈N), then

$$\mathrm{Let}\:{I}_{{n}} =\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\mathrm{tan}^{{n}} {x}\:{dx},\:\left({n}>\mathrm{1}\:\mathrm{and}\:{n}\in{N}\right),\:\mathrm{then} \\ $$

Commented byAbdo msup. last updated on 25/Jan/19

sir this integral is solved see the platform...

$${sir}\:{this}\:{integral}\:{is}\:{solved}\:{see}\:{the}\:{platform}... \\ $$

Commented bygunawan last updated on 25/Jan/19

thank you Sir  I don′t know this integral is solved

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$ $$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{solved} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19

J_n =∫tan^(n−2) xtan^2 xdx  j_n .=∫tan^(n−2) x(sec^2 x−1)dx  =∫tan^(n−2) xd(tanx)−∫tan^(n−2) xdx  j_n =(((tan^(n−2+1) x))/(n−2+1))−j_(n−2)   so  I_n =∣((tan^(n−1) x)/(n−1))∣_0 ^(π/4) −I_(n−2)   I_n =(1/(n−1))−I_(n−2) ←reduction formula  I_(n−2) =(1/(n−3))−I_(n−4)   I_(n−4) =(1/(n−5 ))−I_(n−6 )   .....  .....  I_2 =(1/(2−1))−I_0      now I_0 =∫_0 ^(π/4) (tanx)^0 dx=∣x∣_0 ^(π/4) =(π/4)  now I_2 .=(1/(2−1))−(π/4).=(1/1)−(π/4)

$${J}_{{n}} =\int{tan}^{{n}−\mathrm{2}} {xtan}^{\mathrm{2}} {xdx} \\ $$ $${j}_{{n}} .=\int{tan}^{{n}−\mathrm{2}} {x}\left({sec}^{\mathrm{2}} {x}−\mathrm{1}\right){dx} \\ $$ $$=\int{tan}^{{n}−\mathrm{2}} {xd}\left({tanx}\right)−\int{tan}^{{n}−\mathrm{2}} {xdx} \\ $$ $${j}_{{n}} =\frac{\left({tan}^{{n}−\mathrm{2}+\mathrm{1}} {x}\right)}{{n}−\mathrm{2}+\mathrm{1}}−{j}_{{n}−\mathrm{2}} \\ $$ $${so} \\ $$ $${I}_{{n}} =\mid\frac{{tan}^{{n}−\mathrm{1}} {x}}{{n}−\mathrm{1}}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} −{I}_{{n}−\mathrm{2}} \\ $$ $${I}_{{n}} =\frac{\mathrm{1}}{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \leftarrow{reduction}\:{formula} \\ $$ $${I}_{{n}−\mathrm{2}} =\frac{\mathrm{1}}{{n}−\mathrm{3}}−{I}_{{n}−\mathrm{4}} \\ $$ $${I}_{{n}−\mathrm{4}} =\frac{\mathrm{1}}{{n}−\mathrm{5}\:}−{I}_{{n}−\mathrm{6}\:} \\ $$ $$..... \\ $$ $$..... \\ $$ $${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}−\mathrm{1}}−{I}_{\mathrm{0}} \\ $$ $$\:\:\:{now}\:{I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left({tanx}\right)^{\mathrm{0}} {dx}=\mid{x}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} =\frac{\pi}{\mathrm{4}} \\ $$ $${now}\:{I}_{\mathrm{2}} .=\frac{\mathrm{1}}{\mathrm{2}−\mathrm{1}}−\frac{\pi}{\mathrm{4}}.=\frac{\mathrm{1}}{\mathrm{1}}−\frac{\pi}{\mathrm{4}} \\ $$ $$ \\ $$ $$ \\ $$

Commented bypeter frank last updated on 25/Jan/19

nice work sir

$${nice}\:{work}\:{sir} \\ $$

Answered by peter frank last updated on 25/Jan/19

its reduction formular  I_n =∫tan^n xdx  I_(n ) =∫tan^n xtan^2 xdx  I_(n ) =∫tan^n xsec^2 xdx−∫tan^n xdx  by part  v=tan x  (du/dx)=sec^2 x  I_n =((v^(n−1) x)/(n−1))−I_(n−2)   I_n =((tan^(n−1) )/(n−1))−I_(n−2)   n≥2

$${its}\:{reduction}\:{formular} \\ $$ $${I}_{{n}} =\int{tan}^{{n}} {xdx} \\ $$ $${I}_{{n}\:} =\int{tan}^{{n}} {x}\mathrm{tan}\:^{\mathrm{2}} {xdx} \\ $$ $${I}_{{n}\:} =\int{tan}^{{n}} {x}\mathrm{sec}\:^{\mathrm{2}} {xdx}−\int\mathrm{tan}\:^{{n}} {xdx} \\ $$ $${by}\:{part} \\ $$ $${v}=\mathrm{tan}\:{x} \\ $$ $$\frac{{du}}{{dx}}=\mathrm{sec}\:^{\mathrm{2}} {x} \\ $$ $${I}_{{n}} =\frac{{v}^{{n}−\mathrm{1}} {x}}{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \\ $$ $${I}_{{n}} =\frac{\mathrm{tan}\:^{{n}−\mathrm{1}} }{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \\ $$ $${n}\geqslant\mathrm{2} \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com