Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 54740 by gunawan last updated on 10/Feb/19

Prove that  1. ((n),(r) ) =  (((n−1)),((    r)) ) +  (((n−1)),(( r−1)) )  2. ((n),(r) ) + (((   n)),((r−1)) ) =  (((n+1)),((    r)) )   3.  ((n),(0) )+ ((n),(1) )+ ((n),(2) )+..+ ((n),(n) )=2^n

$${Prove}\:{that} \\ $$$$\mathrm{1}.\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:=\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix}\:+\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:{r}−\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{2}.\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:+\begin{pmatrix}{\:\:\:{n}}\\{{r}−\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix}\: \\ $$$$\mathrm{3}.\:\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}+..+\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}=\mathrm{2}^{{n}} \\ $$

Answered by Kunal12588 last updated on 10/Feb/19

3.^n C_0 +^n C_1 +^n C_2 +...+^n C_n =2^n         eq^n  1  from binomial expansion  (a+b)^p =^p C_0 a^p +^p C_1 a^(p−1) b^1 +...+^p C_r a^(p−r) b^r +...+^p C_p b^p         [r<p]  comparing with the question  ∵ 1^(anything) =1  eq^n   1 can be written as :   ^n C_0 1^n +^n C_1 1^(n−1) 1^1 +^n C_2 1^(n−2) 1^2 +...+^n C_n 1^n   =(1+1)^n =2^n      proved

$$\mathrm{3}.\:^{{n}} {C}_{\mathrm{0}} +^{{n}} {C}_{\mathrm{1}} +^{{n}} {C}_{\mathrm{2}} +...+^{{n}} {C}_{{n}} =\mathrm{2}^{{n}} \:\:\:\:\:\:\:\:{eq}^{{n}} \:\mathrm{1} \\ $$$${from}\:{binomial}\:{expansion} \\ $$$$\left({a}+{b}\right)^{{p}} =^{{p}} {C}_{\mathrm{0}} {a}^{{p}} +^{{p}} {C}_{\mathrm{1}} {a}^{{p}−\mathrm{1}} {b}^{\mathrm{1}} +...+^{{p}} {C}_{{r}} {a}^{{p}−{r}} {b}^{{r}} +...+^{{p}} {C}_{{p}} {b}^{{p}} \:\:\:\:\:\:\:\:\left[{r}<{p}\right] \\ $$$${comparing}\:{with}\:{the}\:{question} \\ $$$$\because\:\mathrm{1}^{{anything}} =\mathrm{1} \\ $$$${eq}^{{n}} \:\:\mathrm{1}\:{can}\:{be}\:{written}\:{as}\::\: \\ $$$$\:^{{n}} {C}_{\mathrm{0}} \mathrm{1}^{{n}} +^{{n}} {C}_{\mathrm{1}} \mathrm{1}^{{n}−\mathrm{1}} \mathrm{1}^{\mathrm{1}} +^{{n}} {C}_{\mathrm{2}} \mathrm{1}^{{n}−\mathrm{2}} \mathrm{1}^{\mathrm{2}} +...+^{{n}} {C}_{{n}} \mathrm{1}^{{n}} \\ $$$$=\left(\mathrm{1}+\mathrm{1}\right)^{{n}} =\mathrm{2}^{{n}} \:\:\:\:\:{proved} \\ $$

Commented by gunawan last updated on 10/Feb/19

nice solution  thank you Sir

$$\mathrm{nice}\:\mathrm{solution} \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19

another way (1+x)^n =nc_0 +nc_1 x+...+nc_n x^n   put x=1  2^n =nc_0 +nc_1 +...+nc_n

$${another}\:{way}\:\left(\mathrm{1}+{x}\right)^{{n}} ={nc}_{\mathrm{0}} +{nc}_{\mathrm{1}} {x}+...+{nc}_{{n}} {x}^{{n}} \\ $$$${put}\:{x}=\mathrm{1} \\ $$$$\mathrm{2}^{{n}} ={nc}_{\mathrm{0}} +{nc}_{\mathrm{1}} +...+{nc}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 11/Feb/19

3) let p(x) =Σ_(k=0) ^n  C_n ^k  x^k   =(x+1)^n      x=1 ⇒ Σ_(k=0) ^n  C_n ^k   =2^n  ⇒C_n ^0  +C_n ^1  +C_n ^2  +....+C_n ^n   =2^n  .

$$\left.\mathrm{3}\right)\:{let}\:{p}\left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \:\:=\left({x}+\mathrm{1}\right)^{{n}} \:\:\: \\ $$$${x}=\mathrm{1}\:\Rightarrow\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:=\mathrm{2}^{{n}} \:\Rightarrow{C}_{{n}} ^{\mathrm{0}} \:+{C}_{{n}} ^{\mathrm{1}} \:+{C}_{{n}} ^{\mathrm{2}} \:+....+{C}_{{n}} ^{{n}} \:\:=\mathrm{2}^{{n}} \:. \\ $$

Answered by Kunal12588 last updated on 10/Feb/19

^n C_r =^(n−1) C_r +^(n−1) C_(r−1)   1. RHS  ^(n−1) C_r +^(n−1) C_(r−1) =(((n−1)!)/(r!(n−1−r)!))+(((n−1)!)/((r−1)!(n−r)!))  =(((n−1)!)/(r(r−1)!(n−1−r)!))+(((n−1)!)/((r−1)!(n−r)(n−1−r)!))  =(((n−1)!)/((r−1)!(n−1−r)!))((1/r)+(1/(n−r)))  =(((n−1)!)/((r−1)!(n−1−r)!))((n/(r(n−r))))  =((n(n−1)!)/(r(r−1)!(n−r)(n−1−r!)))=((n!)/(r!(n−r)!))  = ^n C_r   = LHS   proved

$$\:^{{n}} {C}_{{r}} =\:^{{n}−\mathrm{1}} {C}_{{r}} +^{{n}−\mathrm{1}} {C}_{{r}−\mathrm{1}} \\ $$$$\mathrm{1}.\:{RHS} \\ $$$$\:^{{n}−\mathrm{1}} {C}_{{r}} +^{{n}−\mathrm{1}} {C}_{{r}−\mathrm{1}} =\frac{\left({n}−\mathrm{1}\right)!}{{r}!\left({n}−\mathrm{1}−{r}\right)!}+\frac{\left({n}−\mathrm{1}\right)!}{\left({r}−\mathrm{1}\right)!\left({n}−{r}\right)!} \\ $$$$=\frac{\left({n}−\mathrm{1}\right)!}{{r}\left({r}−\mathrm{1}\right)!\left({n}−\mathrm{1}−{r}\right)!}+\frac{\left({n}−\mathrm{1}\right)!}{\left({r}−\mathrm{1}\right)!\left({n}−{r}\right)\left({n}−\mathrm{1}−{r}\right)!} \\ $$$$=\frac{\left({n}−\mathrm{1}\right)!}{\left({r}−\mathrm{1}\right)!\left({n}−\mathrm{1}−{r}\right)!}\left(\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{{n}−{r}}\right) \\ $$$$=\frac{\left({n}−\mathrm{1}\right)!}{\left({r}−\mathrm{1}\right)!\left({n}−\mathrm{1}−{r}\right)!}\left(\frac{{n}}{{r}\left({n}−{r}\right)}\right) \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)!}{{r}\left({r}−\mathrm{1}\right)!\left({n}−{r}\right)\left({n}−\mathrm{1}−{r}!\right)}=\frac{{n}!}{{r}!\left({n}−{r}\right)!} \\ $$$$=\:\:^{{n}} {C}_{{r}} \:\:=\:{LHS}\:\:\:{proved} \\ $$

Answered by Kunal12588 last updated on 10/Feb/19

2.^n C_r +^n C_(r−1) =^(n+1) C_r   LHS  =((n!)/(r!(n−r)!)) + ((n!)/((r−1)!(n−r+1)!))  =((n!)/((r−1)!(n−r)!))((1/r)+(1/(n−r+1)))  =(((n+1)!)/(r!(n+1−r)!))=^(n+1) C_r =RHS  proved

$$\mathrm{2}.\:^{{n}} {C}_{{r}} +^{{n}} {C}_{{r}−\mathrm{1}} =^{{n}+\mathrm{1}} {C}_{{r}} \\ $$$${LHS} \\ $$$$=\frac{{n}!}{{r}!\left({n}−{r}\right)!}\:+\:\frac{{n}!}{\left({r}−\mathrm{1}\right)!\left({n}−{r}+\mathrm{1}\right)!} \\ $$$$=\frac{{n}!}{\left({r}−\mathrm{1}\right)!\left({n}−{r}\right)!}\left(\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{{n}−{r}+\mathrm{1}}\right) \\ $$$$=\frac{\left({n}+\mathrm{1}\right)!}{{r}!\left({n}+\mathrm{1}−{r}\right)!}=^{{n}+\mathrm{1}} {C}_{{r}} ={RHS}\:\:{proved} \\ $$

Commented by Kunal12588 last updated on 10/Feb/19

same as (1) just replace (n−1) with n

$${same}\:{as}\:\left(\mathrm{1}\right)\:{just}\:{replace}\:\left({n}−\mathrm{1}\right)\:{with}\:{n} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com