Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55214 by maxmathsup by imad last updated on 19/Feb/19

let U_n =∫_(1/n) ^1 (√(x^2 +(3/n)))dx   .calculate lim_(n→+∞) U_n

$${let}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \sqrt{{x}^{\mathrm{2}} +\frac{\mathrm{3}}{{n}}}{dx}\:\:\:.{calculate}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 19/Feb/19

we have U_n =∫_R  (√(x^2  +(3/n))) χ_(](1/n),1]) (x)dx =∫_R f(n)dx with  f_n (x) =(√(x^2  +(3/n)))χ_(](1/n),1]) (x)dx    the sequence of functions f_n (x) verify  f_n (x)→^(cs)  x    on ]0,1]  and  ∣f_n (x)∣=f_n (x) ≤(√(x^2  +1))   ∀x∈]0,1]  theorem of  convergence dominee give  lim_(n→+∞)  ∫_R f_n (x)dx  =∫_R  lim_(n→+∞) f_n (x)dx =∫_0 ^1 x dx =[(x^2 /2)]_0 ^1 =(1/2)  ⇒lim_(n→+∞) U_n =(1/2) .

$${we}\:{have}\:{U}_{{n}} =\int_{{R}} \:\sqrt{{x}^{\mathrm{2}} \:+\frac{\mathrm{3}}{{n}}}\:\chi_{\left.\right]\left.\frac{\mathrm{1}}{{n}},\mathrm{1}\right]} \left({x}\right){dx}\:=\int_{{R}} {f}\left({n}\right){dx}\:{with} \\ $$$${f}_{{n}} \left({x}\right)\:=\sqrt{{x}^{\mathrm{2}} \:+\frac{\mathrm{3}}{{n}}}\chi_{\left.\right]\left.\frac{\mathrm{1}}{{n}},\mathrm{1}\right]} \left({x}\right){dx}\:\:\:\:{the}\:{sequence}\:{of}\:{functions}\:{f}_{{n}} \left({x}\right)\:{verify} \\ $$$$\left.{f}_{{n}} \left.\left(\left.{x}\left.\right)\rightarrow^{{cs}} \:{x}\:\:\:\:{on}\:\right]\mathrm{0},\mathrm{1}\right]\:\:{and}\:\:\mid{f}_{{n}} \left({x}\right)\mid={f}_{{n}} \left({x}\right)\:\leqslant\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\:\:\forall{x}\in\right]\mathrm{0},\mathrm{1}\right]\:\:{theorem}\:{of} \\ $$$${convergence}\:{dominee}\:{give}\:\:{lim}_{{n}\rightarrow+\infty} \:\int_{{R}} {f}_{{n}} \left({x}\right){dx} \\ $$$$=\int_{{R}} \:{lim}_{{n}\rightarrow+\infty} {f}_{{n}} \left({x}\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\:{dx}\:=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Feb/19

∫_(1/n) ^1 (√(x^2 +((√(3/n)) )^2 ))  dx  formula  ∫(√(x^2 +a^2 )) dx=(x/2)(√(x^2 +a^2 )) +(a^2 /2)ln(x+(√(x^2 +a^2 )) )  =∣(x/2)(√(x^2 +(3/n))) +(3/(n×2))ln(x+(√(x^2 +(3/n))) )∣_(1/n) ^1   =[{(1/2)(√(1+(3/n))) +(3/(2n))ln(1+(√(1+(3/n))) }−{(1/(2n))(√((1/n^2 )+(3/n))) +(3/(2n))ln((1/n)+(√((1/n^2 )+(3/n))) )]  when n→∞  (1/2)×1=(1/2)

$$\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \sqrt{{x}^{\mathrm{2}} +\left(\sqrt{\frac{\mathrm{3}}{{n}}}\:\right)^{\mathrm{2}} }\:\:{dx} \\ $$$${formula} \\ $$$$\int\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\:{dx}=\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\:+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\:\right) \\ $$$$=\mid\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} +\frac{\mathrm{3}}{{n}}}\:+\frac{\mathrm{3}}{{n}×\mathrm{2}}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +\frac{\mathrm{3}}{{n}}}\:\right)\mid_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \\ $$$$=\left[\left\{\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\frac{\mathrm{3}}{{n}}}\:+\frac{\mathrm{3}}{\mathrm{2}{n}}{ln}\left(\mathrm{1}+\sqrt{\mathrm{1}+\frac{\mathrm{3}}{{n}}}\:\right\}−\left\{\frac{\mathrm{1}}{\mathrm{2}{n}}\sqrt{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{3}}{{n}}}\:+\frac{\mathrm{3}}{\mathrm{2}{n}}{ln}\left(\frac{\mathrm{1}}{{n}}+\sqrt{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{3}}{{n}}}\:\right)\right]\right.\right. \\ $$$${when}\:{n}\rightarrow\infty \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com