Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55467 by peter frank last updated on 24/Feb/19

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Feb/19

thinking different way...  ∫_0 ^∞ (dx/(1+x^2 ))>∫_0 ^∞ ((cos(lnx))/(1+x^2 ))dx>∫_0 ^∞ ((−dx)/(1+x^2 ))  since max value cos(lnx)=1  min value cos(lnx)=−1  so ∫_0 ^∞ (dx/(1+x^2 ))>I>∫_0 ^∞ ((−dx)/(1+x^2 ))  ∣tan^(−1) x∣_0 ^∞ >I>(−1)∣tan^(−1) x∣_0 ^∞   (π/2)>I>((−π)/2)

$${thinking}\:{different}\:{way}... \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }>\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({lnx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}>\int_{\mathrm{0}} ^{\infty} \frac{−{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${since}\:{max}\:{value}\:{cos}\left({lnx}\right)=\mathrm{1} \\ $$$${min}\:{value}\:{cos}\left({lnx}\right)=−\mathrm{1} \\ $$$${so}\:\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }>{I}>\int_{\mathrm{0}} ^{\infty} \frac{−{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\mid{tan}^{−\mathrm{1}} {x}\mid_{\mathrm{0}} ^{\infty} >{I}>\left(−\mathrm{1}\right)\mid{tan}^{−\mathrm{1}} {x}\mid_{\mathrm{0}} ^{\infty} \\ $$$$\frac{\pi}{\mathrm{2}}>{I}>\frac{−\pi}{\mathrm{2}} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Feb/19

p=∫_0 ^∞ ((cos(lnx))/(1+x^2 ))dx   q=∫_0 ^∞ ((sin(lnx))/(1+x^2 ))dx  p+iq=∫_0 ^∞ (e^(i(lnx)) /(1+x^2 ))dx  p+iq=∫_0 ^∞ (e^(lnx^i ) /(1+x^2 ))dx→∫_0 ^∞ (x^i /(1+x^2 ))dx  x=tana  ∫_0 ^(π/2) (((tana)^i )/(sec^2 a))×sec^2 ada  ∫_0 ^(π/2) (tana)^i da  wait pls...

$${p}=\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({lnx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:{q}=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({lnx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${p}+{iq}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{i}\left({lnx}\right)} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${p}+{iq}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{lnx}^{{i}} } }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\rightarrow\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{i}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${x}={tana} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left({tana}\right)^{{i}} }{{sec}^{\mathrm{2}} {a}}×{sec}^{\mathrm{2}} {ada} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({tana}\right)^{{i}} {da} \\ $$$${wait}\:{pls}... \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 26/Feb/19

residus method but not sure its only a try...  let I =∫_0 ^∞   ((cos(ln(x)))/(1+x^2 )) dx  ⇒  I =Re( ∫_0 ^∞   (e^(ilnx) /(1+x^2 ))dx) and  ∫_0 ^∞   (e^(ilnx) /(1+x^2 ))dx =∫_0 ^∞    (e^((i/2)ln(x^2 )) /(1+x^2 ))dx  =(1/2) ∫_(−∞) ^(+∞)    (e^((i/2)ln(x^2 )) /(1+x^2 ))dx let ϕ(z) =(e^((i/2)ln(z^2 )) /(1+z^2 ))  the poles of ϕ are i and −i so ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,i)  =2iπ (e^((i/2)ln(−1)) /(2i)) =π e^((i/2)(iπ))  =π e^(−(π/2))   ⇒ I =(π/2) e^(−(π/2))   .

$${residus}\:{method}\:{but}\:{not}\:{sure}\:{its}\:{only}\:{a}\:{try}... \\ $$$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({ln}\left({x}\right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:\Rightarrow\:\:{I}\:={Re}\left(\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{ilnx}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right)\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{ilnx}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{\frac{{i}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} \right)} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{\frac{{i}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} \right)} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{let}\:\varphi\left({z}\right)\:=\frac{{e}^{\frac{{i}}{\mathrm{2}}{ln}\left({z}^{\mathrm{2}} \right)} }{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i}\:{so}\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{i}\right) \\ $$$$=\mathrm{2}{i}\pi\:\frac{{e}^{\frac{{i}}{\mathrm{2}}{ln}\left(−\mathrm{1}\right)} }{\mathrm{2}{i}}\:=\pi\:{e}^{\frac{{i}}{\mathrm{2}}\left({i}\pi\right)} \:=\pi\:{e}^{−\frac{\pi}{\mathrm{2}}} \:\:\Rightarrow\:{I}\:=\frac{\pi}{\mathrm{2}}\:{e}^{−\frac{\pi}{\mathrm{2}}} \:\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com