Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 55815 by Rio Mike last updated on 04/Mar/19

prove that  (1+x)^n = 1+nx +((n(n−1))/(2!))x^2 +((n(n−1)(n−2))/(3!))x^3 +...n(n−n)  using a suitable expansion method  hence determine the expansion of  (2.001)^(89)

$${prove}\:{that} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} =\:\mathrm{1}+{nx}\:+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{3}!}{x}^{\mathrm{3}} +...{n}\left({n}−{n}\right) \\ $$$${using}\:{a}\:{suitable}\:{expansion}\:{method} \\ $$$${hence}\:{determine}\:{the}\:{expansion}\:{of} \\ $$$$\left(\mathrm{2}.\mathrm{001}\right)^{\mathrm{89}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by Kunal12588 last updated on 04/Mar/19

we can expand (1+x)^n  using binomial  expansion.  (a+b)^n =^n C_0 a^n +^n C_1 a^(n−1) b^1 +...+^n C_r a^(n−r) b^r +...+^n C_n b^n   put a=1 and b=x  (1+x)^n =^n C_0 1^n +^n C_1 1^(n−1) x+...+^n C_n x^n   =1+((n(n−1)!)/((n−1)!))x+((n(n−1)(n−2)!)/(2!(n−2)!))x^2 +...+x^n   =1+nx+((n(n−1))/(2!))x^2 +((n(n−1)(n−2))/(3!))x^3 +...+x^n   (2.001)^(89) =(1+1.001)^(89)   =1+89(1.001)+((89×88)/2)(1.001)^2 +...+(1.001)^(89)

$${we}\:{can}\:{expand}\:\left(\mathrm{1}+{x}\right)^{{n}} \:{using}\:{binomial} \\ $$$${expansion}. \\ $$$$\left({a}+{b}\right)^{{n}} =^{{n}} {C}_{\mathrm{0}} {a}^{{n}} +^{{n}} {C}_{\mathrm{1}} {a}^{{n}−\mathrm{1}} {b}^{\mathrm{1}} +...+^{{n}} {C}_{{r}} {a}^{{n}−{r}} {b}^{{r}} +...+^{{n}} {C}_{{n}} {b}^{{n}} \\ $$$${put}\:{a}=\mathrm{1}\:{and}\:{b}={x} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} =^{{n}} {C}_{\mathrm{0}} \mathrm{1}^{{n}} +^{{n}} {C}_{\mathrm{1}} \mathrm{1}^{{n}−\mathrm{1}} {x}+...+^{{n}} {C}_{{n}} {x}^{{n}} \\ $$$$=\mathrm{1}+\frac{{n}\left({n}−\mathrm{1}\right)!}{\left({n}−\mathrm{1}\right)!}{x}+\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)!}{\mathrm{2}!\left({n}−\mathrm{2}\right)!}{x}^{\mathrm{2}} +...+{x}^{{n}} \\ $$$$=\mathrm{1}+{nx}+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{3}!}{x}^{\mathrm{3}} +...+{x}^{{n}} \\ $$$$\left(\mathrm{2}.\mathrm{001}\right)^{\mathrm{89}} =\left(\mathrm{1}+\mathrm{1}.\mathrm{001}\right)^{\mathrm{89}} \\ $$$$=\mathrm{1}+\mathrm{89}\left(\mathrm{1}.\mathrm{001}\right)+\frac{\mathrm{89}×\mathrm{88}}{\mathrm{2}}\left(\mathrm{1}.\mathrm{001}\right)^{\mathrm{2}} +...+\left(\mathrm{1}.\mathrm{001}\right)^{\mathrm{89}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com