Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 55906 by gunawan last updated on 06/Mar/19

lim_(n→∞)  Σ_(k=1) ^(n) ((8n^2 )/(n^4 +1))=..

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\overset{{n}} {\underset{{k}=\mathrm{1}} {\sum}}\frac{\mathrm{8}{n}^{\mathrm{2}} }{{n}^{\mathrm{4}} +\mathrm{1}}=.. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19

T_n =((8n^2 )/(1+n^4 ))=((4×2n^2 )/(1+(n^2 )^2 ))=((4×(2tannθ))/(1+(tannθ)^2 ))=4sin(2nθ)  T_1 =4sin(2×1×θ)→(here n^2 =tannθ]  T_2 =4sin(2×2×θ)  ...  ...  now  S=4[sin2θ+sin4θ+sin6θ+...+sin2nθ]  2sin2θsinθ=cosθ−cos3θ  2sin4θsinθ=cos3θ−cos5θ  2sin6θsinθ=cos5θ−cos7θ  ....  ....  2sin2nθsinθ=cos(2n−1)θ−cos(2n+1)θ  add them  2sinθ[sin2θ+sin4θ+...+sin2nθ]=cosθ−cos(2n+1)θ  2sinθ×(S/4)=2sin(n+1)θsinnθ  S=((4sin(n+1)θsin(nθ))/(sinθ))  [  now tannθ=n^2 →sinnθ=(n^2 /(√(1+n^4 )))  cosnθ=(1/(√(1+n^4 )))  sinθ=(1/(√2))  cosθ=(1/(√2))  S=((4[sinnθcosθ+cosnθsinθ]sinnθ)/(sinθ))  S=((4[(n^2 /(√(1+n^4 )))×(1/(√2))+(1/(√(1+n^4 )))×(1/(√2))]×(n^2 /(√(1+n^4 ))))/(1/(√2)))  S=4[(n^2 /(n^2 (√((1/n^4 )+1)) ))+(1/(√(1+n^4 )))]×(n^2 /(n^2 (√((1/n^4 )+1))))    when n→∞  S=4[(1/(√(0+1)))+0]×(1/(√(0+1)))  so answer is 4  pls check is it correct... i have doubt also  becos T_1  it self is 4 ...  so  how S can be 4...  pls pls check the steps mistake if any...

$${T}_{{n}} =\frac{\mathrm{8}{n}^{\mathrm{2}} }{\mathrm{1}+{n}^{\mathrm{4}} }=\frac{\mathrm{4}×\mathrm{2}{n}^{\mathrm{2}} }{\mathrm{1}+\left({n}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\mathrm{4}×\left(\mathrm{2}{tann}\theta\right)}{\mathrm{1}+\left({tann}\theta\right)^{\mathrm{2}} }=\mathrm{4}{sin}\left(\mathrm{2}{n}\theta\right) \\ $$$${T}_{\mathrm{1}} =\mathrm{4}{sin}\left(\mathrm{2}×\mathrm{1}×\theta\right)\rightarrow\left({here}\:{n}^{\mathrm{2}} ={tann}\theta\right] \\ $$$${T}_{\mathrm{2}} =\mathrm{4}{sin}\left(\mathrm{2}×\mathrm{2}×\theta\right) \\ $$$$... \\ $$$$... \\ $$$${now} \\ $$$${S}=\mathrm{4}\left[{sin}\mathrm{2}\theta+{sin}\mathrm{4}\theta+{sin}\mathrm{6}\theta+...+{sin}\mathrm{2}{n}\theta\right] \\ $$$$\mathrm{2}{sin}\mathrm{2}\theta{sin}\theta={cos}\theta−{cos}\mathrm{3}\theta \\ $$$$\mathrm{2}{sin}\mathrm{4}\theta{sin}\theta={cos}\mathrm{3}\theta−{cos}\mathrm{5}\theta \\ $$$$\mathrm{2}{sin}\mathrm{6}\theta{sin}\theta={cos}\mathrm{5}\theta−{cos}\mathrm{7}\theta \\ $$$$.... \\ $$$$.... \\ $$$$\mathrm{2}{sin}\mathrm{2}{n}\theta{sin}\theta={cos}\left(\mathrm{2}{n}−\mathrm{1}\right)\theta−{cos}\left(\mathrm{2}{n}+\mathrm{1}\right)\theta \\ $$$${add}\:{them} \\ $$$$\mathrm{2}{sin}\theta\left[{sin}\mathrm{2}\theta+{sin}\mathrm{4}\theta+...+{sin}\mathrm{2}{n}\theta\right]={cos}\theta−{cos}\left(\mathrm{2}{n}+\mathrm{1}\right)\theta \\ $$$$\mathrm{2}{sin}\theta×\frac{{S}}{\mathrm{4}}=\mathrm{2}{sin}\left({n}+\mathrm{1}\right)\theta{sinn}\theta \\ $$$${S}=\frac{\mathrm{4}{sin}\left({n}+\mathrm{1}\right)\theta{sin}\left({n}\theta\right)}{{sin}\theta} \\ $$$$\left[\right. \\ $$$${now}\:{tann}\theta={n}^{\mathrm{2}} \rightarrow{sinn}\theta=\frac{{n}^{\mathrm{2}} }{\sqrt{\mathrm{1}+{n}^{\mathrm{4}} }} \\ $$$${cosn}\theta=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{n}^{\mathrm{4}} }} \\ $$$${sin}\theta=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\:{cos}\theta=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$${S}=\frac{\mathrm{4}\left[{sinn}\theta{cos}\theta+{cosn}\theta{sin}\theta\right]{sinn}\theta}{{sin}\theta} \\ $$$${S}=\frac{\mathrm{4}\left[\frac{{n}^{\mathrm{2}} }{\sqrt{\mathrm{1}+{n}^{\mathrm{4}} }}×\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{n}^{\mathrm{4}} }}×\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right]×\frac{{n}^{\mathrm{2}} }{\sqrt{\mathrm{1}+{n}^{\mathrm{4}} }}}{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}} \\ $$$${S}=\mathrm{4}\left[\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} \sqrt{\frac{\mathrm{1}}{{n}^{\mathrm{4}} }+\mathrm{1}}\:}+\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{n}^{\mathrm{4}} }}\right]×\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} \sqrt{\frac{\mathrm{1}}{{n}^{\mathrm{4}} }+\mathrm{1}}} \\ $$$$ \\ $$$${when}\:{n}\rightarrow\infty \\ $$$${S}=\mathrm{4}\left[\frac{\mathrm{1}}{\sqrt{\mathrm{0}+\mathrm{1}}}+\mathrm{0}\right]×\frac{\mathrm{1}}{\sqrt{\mathrm{0}+\mathrm{1}}} \\ $$$${so}\:{answer}\:{is}\:\mathrm{4} \\ $$$${pls}\:{check}\:{is}\:{it}\:{correct}...\:{i}\:{have}\:{doubt}\:{also} \\ $$$${becos}\:{T}_{\mathrm{1}} \:{it}\:{self}\:{is}\:\mathrm{4}\:... \\ $$$${so}\:\:{how}\:{S}\:{can}\:{be}\:\mathrm{4}... \\ $$$${pls}\:{pls}\:{check}\:{the}\:{steps}\:{mistake}\:{if}\:{any}... \\ $$

Commented by mr W last updated on 06/Mar/19

logic is not correct sir.  you take θ as constant, but when you  assume n^2 =tan (nθ) you mean θ  is not constant, since θ=((tan^(−1) n^2 )/n), i.e.  θ is dependent from n.  therefore you can not assume  n^2 =tan (nθ)

$${logic}\:{is}\:{not}\:{correct}\:{sir}. \\ $$$${you}\:{take}\:\theta\:{as}\:{constant},\:{but}\:{when}\:{you} \\ $$$${assume}\:{n}^{\mathrm{2}} =\mathrm{tan}\:\left({n}\theta\right)\:{you}\:{mean}\:\theta \\ $$$${is}\:{not}\:{constant},\:{since}\:\theta=\frac{\mathrm{tan}^{−\mathrm{1}} {n}^{\mathrm{2}} }{{n}},\:{i}.{e}. \\ $$$$\theta\:{is}\:{dependent}\:{from}\:{n}. \\ $$$${therefore}\:{you}\:{can}\:{not}\:{assume} \\ $$$${n}^{\mathrm{2}} =\mathrm{tan}\:\left({n}\theta\right) \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19

thank you sir...

$${thank}\:{you}\:{sir}... \\ $$

Commented by mr W last updated on 06/Mar/19

does it help:  T_n =(8/(n^2 +(1/n^2 )))=(8/((n+(1/n))^2 −2))=2(√2)((1/(n+(1/n)−(√2)))−(1/(n+(1/n)+(√2))))

$${does}\:{it}\:{help}: \\ $$$${T}_{{n}} =\frac{\mathrm{8}}{{n}^{\mathrm{2}} +\frac{\mathrm{1}}{{n}^{\mathrm{2}} }}=\frac{\mathrm{8}}{\left({n}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} −\mathrm{2}}=\mathrm{2}\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}}{{n}}−\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}}{{n}}+\sqrt{\mathrm{2}}}\right) \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19

sir let me use your hint pls...

$${sir}\:{let}\:{me}\:{use}\:{your}\:{hint}\:{pls}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com