Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 56120 by Tawa1 last updated on 10/Mar/19

Answered by 121194 last updated on 10/Mar/19

without loss of generality, lets takes A paralel to  axis x and B dephased θ anti−clockwise  A_x =V  A_y =0  B_x =Vcos θ  B_y =Vsin θ  A+B=(A_x +B_x )x^→ +(A_y +B_y )y^→   =(V+Vcos θ)x^→ +Vsin θy^→   ∣A+B∣=(√(V^2 (1+cos θ)^2 +V^2 sin θ))  =V(√((1+cos θ)^2 +sin^2 θ))  =V(√(1+2cos θ+cos^2 θ+sin^2 θ))  =V(√(2(1+cos θ)))  cos θ=cos ((θ/2)+(θ/2))=cos^2 (θ/2)−sin^2 (θ/2)  cos^2 α+sin^2 α=1⇔sin^2 α=1−cos^2 α  cos θ=2cos^2 (θ/2)−1  1+cos θ=2cos^2 (θ/2)  ∣A+B∣=V(√(2×2cos^2 (θ/2)))  =2V∣cos (θ/2)∣  analogy we have  A−B=(A_x −B_x )x^→ +(A_y −B_y )y^→   =V(1−cos θ)x^→ −Vsin θy^→   ∣A−B∣=V(√((1−cos θ)^2 +sin^2 θ))  =V(√(2(1−cos θ)))  (1+cos θ)+(1−cos θ)=2  2cos^2 (θ/2)+(1−cos θ)=2  1−cos θ=2(1−cos^2 (θ/2))=2sin^2 (θ/2)  ∣A−B∣=2V∣sin (θ/2)∣

$$\mathrm{without}\:\mathrm{loss}\:\mathrm{of}\:\mathrm{generality},\:\mathrm{lets}\:\mathrm{takes}\:\mathrm{A}\:\mathrm{paralel}\:\mathrm{to} \\ $$$$\mathrm{axis}\:{x}\:\mathrm{and}\:\mathrm{B}\:\mathrm{dephased}\:\theta\:\mathrm{anti}−\mathrm{clockwise} \\ $$$${A}_{{x}} ={V} \\ $$$${A}_{{y}} =\mathrm{0} \\ $$$${B}_{{x}} ={V}\mathrm{cos}\:\theta \\ $$$${B}_{{y}} ={V}\mathrm{sin}\:\theta \\ $$$${A}+{B}=\left({A}_{{x}} +{B}_{{x}} \right)\overset{\rightarrow} {{x}}+\left({A}_{{y}} +{B}_{{y}} \right)\overset{\rightarrow} {{y}} \\ $$$$=\left({V}+{V}\mathrm{cos}\:\theta\right)\overset{\rightarrow} {{x}}+{V}\mathrm{sin}\:\theta\overset{\rightarrow} {{y}} \\ $$$$\mid{A}+{B}\mid=\sqrt{{V}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{cos}\:\theta\right)^{\mathrm{2}} +{V}^{\mathrm{2}} \mathrm{sin}\:\theta} \\ $$$$={V}\sqrt{\left(\mathrm{1}+\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\mathrm{sin}^{\mathrm{2}} \theta} \\ $$$$={V}\sqrt{\mathrm{1}+\mathrm{2cos}\:\theta+\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{sin}^{\mathrm{2}} \theta} \\ $$$$={V}\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)} \\ $$$$\mathrm{cos}\:\theta=\mathrm{cos}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\theta}{\mathrm{2}}\right)=\mathrm{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}−\mathrm{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \alpha+\mathrm{sin}^{\mathrm{2}} \alpha=\mathrm{1}\Leftrightarrow\mathrm{sin}^{\mathrm{2}} \alpha=\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \alpha \\ $$$$\mathrm{cos}\:\theta=\mathrm{2cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}−\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{cos}\:\theta=\mathrm{2cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\mid{A}+{B}\mid={V}\sqrt{\mathrm{2}×\mathrm{2cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$$=\mathrm{2}{V}\mid\mathrm{cos}\:\frac{\theta}{\mathrm{2}}\mid \\ $$$$\mathrm{analogy}\:\mathrm{we}\:\mathrm{have} \\ $$$${A}−{B}=\left({A}_{{x}} −{B}_{{x}} \right)\overset{\rightarrow} {{x}}+\left({A}_{{y}} −{B}_{{y}} \right)\overset{\rightarrow} {{y}} \\ $$$$={V}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\overset{\rightarrow} {{x}}−{V}\mathrm{sin}\:\theta\overset{\rightarrow} {{y}} \\ $$$$\mid{A}−{B}\mid={V}\sqrt{\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\mathrm{sin}^{\mathrm{2}} \theta} \\ $$$$={V}\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)} \\ $$$$\left(\mathrm{1}+\mathrm{cos}\:\theta\right)+\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\mathrm{2} \\ $$$$\mathrm{2cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}+\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\mathrm{2} \\ $$$$\mathrm{1}−\mathrm{cos}\:\theta=\mathrm{2}\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\right)=\mathrm{2sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\mid{A}−{B}\mid=\mathrm{2}{V}\mid\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\mid \\ $$

Commented by Tawa1 last updated on 10/Mar/19

God bless you sir. I appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com